Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-04T13:14:54.815Z Has data issue: false hasContentIssue false

A VEDA simulation on cement paste: using dynamic atomic force microscopy to characterize cellulose nanocrystal distribution

Published online by Cambridge University Press:  24 July 2017

Yizheng Cao*
Affiliation:
SSCI, Albany Molecular Research Inc., West Lafayette, IN 47906, USA
Kho Pin Verian
Affiliation:
Solidia Technologies, Piscataway, NJ 08854, USA
*
Address all correspondence to Yizheng Cao at yizheng.cao@amriglobal.com
Get access

Abstract

Cellulose nanocrystal (CNC) enhances mechanical performance of cement composites via short-circuit diffusion (SCD). CNCs transport water along their hydrophilic surface into the unhydrated cement cores to induce extra hydration. It is important to characterize CNC distribution because it determines the SCD pathways. This study for the first time, employs virtual environment dynamic atomic force microscopy, an atomic force microscopy computational tool to investigate CNC distribution in both fresh and hardened cement pastes. The methods not only provide insights in a static context (hardened sample), but also offer opportunities to evaluate the interaction of CNCs with calcium-silicate-hydrate growth during the kinetic early ages of hydration.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Konsta-Gdoutos, M.S. and Aza, C.A.: Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 53, 8 (2014).Google Scholar
2.Cao, Y., Zavaterri, P., Youngblood, J., Moon, R., and Weiss, J.: The influence of cellulose nanocrystal additions on the performance of cement paste. Cem. Concr. Compos. 56, 11 (2015).Google Scholar
3.Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 54 (2011).Google Scholar
4.Cao, Y., Zavattieri, P., Youngblood, J., Moon, R., and Weiss, J.: The relationship between cellulose nanocrystal dispersion and strength. Constr. Build. Mater. 119, 9 (2016).Google Scholar
5.Cao, Y., Tian, N., Bahr, D., Zavattieri, P.D., Youngblood, J., Moon, R.J., and Weiss, J.: The influence of cellulose nanocrystals on the microstructure of cement paste. Cem. Concr. Compos. 76, 10 (2016).Google Scholar
6.Phan-Xuan, T., Thuresson, A., Skepö, M., Labrador, A., Bordes, R., and Matic, A.: Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts. Cellulose 23, 11 (2016).Google Scholar
7.Wang, W., Wang, J., Shi, X., Yu, Z., Song, Z., Dong, L., Jiang, G., and Han, S.: Synthesis of mesoporous TiO2 induced by nano-cellulose and its photocatalytic properties. BioResources 11, 10 (2016).Google Scholar
8.Melcher, J., Hu, S., and Raman, A.: Invited article: VEDA: a web-based virtual environment for dynamic atomic force microscopy. Rev. Sci. Instrum. 79, 11 (2008).Google Scholar
9.Kiracofe, D., Melcher, J., and Raman, A.: Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator. Rev. Sci. Instrum. 83, 17 (2012).Google Scholar
10.Melcher, J., Carrasco, C., Xu, X., Carrascosa, J.L., Gómez-Herrero, J., Pablo, P.J.d, and Raman, A.: Origins of phase contrast in the atomic force microscope in liquids. Proc. Natl. Acad. Sci. USA 106, 6 (2009).Google Scholar
11.Hu, S. and Raman, A.: Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Appl. Phys. Lett. 91, 3 (2007).Google Scholar
12.Raman, A., Melcher, J., and Tung, R.: Cantilever dynamics in atomic force microscopy. Nano Today 3, 8 (2008).Google Scholar
13.Kiracofe, D., Raman, A., and Yablon, D.: Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes. Beilstein J. Nanotechnol. 4, 9 (2013).Google Scholar
14.Voïtchovsky, K.: Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface. Phys. Rev. E 88, 6 (2013).Google Scholar
15.Martinez-Martin, D., Carrasco, C., Hernando-Perez, M., Pablo, P.J.d, Gomez-Herrero, J., Perez, R., Mateu, M.G., Carrascosa, J.L., Kiracofe, D., Melcher, J., and Raman, A.: Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS ONE 7, 8 (2012).Google Scholar
16.Devaprakasam, D., Hatton, P.V., Möbus, G., and Inkson, B.J.: Nanoscale tribology, energy dissipation and failure mechanisms of nano- and micro-silica particle-filled polymer composites. Tribol. Lett. 34, 9 (2009).Google Scholar
17.Kurra, N., Prakash, G., Basavaraja, S., Fisher, T.S., Kulkarni, G.U., and Reifenberger, R.G.: Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology 22, 9 (2011).Google Scholar
18.Rajabipour, F., Sant, G., and Weiss, J.: Interactions between shrinkage reducing admixtures (SRA) and cement paste's pore solution. Cem. Concr. Res. 38, 10 (2008).Google Scholar
19.Ahmed, N., Nino, D.F., and Moy, V.T.: Measurement of solution viscosity by atomic force microscopy. Rev. Sci. Instrum. 72, 4 (2001).Google Scholar
20.Korayem, M.H., Ebrahimi, N., and Sotoudegan, M.S.: Frequency response of atomic force microscopy microcantilevers oscillating in a viscous liquid: a comparison of various methods. Sci. Iran 18, 10 (2011).Google Scholar
21.Labuda, A. and Grütter, P.: Atomic force microscopy in viscous ionic liquids. Langmuir 28, 4 (2012).Google Scholar
22.Sedin, D.L. and Rowlen, K.L.: Adhesion forces measured by atomic force microscopy in humid air. Anal. Chem. 72, 7 (2000).Google Scholar
23.Wang, T., Ma, C., Chen, Y., Chu, J., and Huang, W.: Effects of temperature and humidity on atomic force microscopy dimensional measurement. Microsc. Res. Tech. 78, 7 (2015).Google Scholar
24.Stukalov, O., Murray, C.A., Jacina, A., and Dutcher, J.R.: Relative humidity control for atomic force microscopes. Rev. Sci. Instrum. 77, 6 (2006).Google Scholar
25.García, R. and Paulo, A.S.: Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys. Rev. B 60, 7 (1999).Google Scholar
26.Hurley, D., Kocun, M., Revenko, I., Ohler, B., and Proksch, R.: Fast, quantitative AFM nanomechanical measurements using AM–FM viscoelastic mapping mode. Microsc. Anal. SPM supplement, 5, 913 (2015).Google Scholar
27.Yang, T., Keller, B., and Magyari, E.: AFM investigation of cement paste in humid air at different relative humidities. J. Phys. D: Appl. Phys. 35, 4 (2002).Google Scholar
28.Chen, G.Y., Warmack, R.J., Thundat, T., Allison, D.P., and Huang, A.: Resonance response of scanning force microscopy cantilevers. Rev. Sci. Instrum. 65, 6 (1994).Google Scholar
29.García, R. and Paulo, A.S.: Dynamics of a vibrating tip near or in intermittent contact with a surface. Phys. Rev. B 61, 4 (2000).Google Scholar
30.Hoummady, M., Rochat, E., and Farnault, E.: Nonlinear tip-sample interactions affecting frequency responses of microcantilevers in tapping mode atomic force microscopy. Appl. Phys. A 66, 4 (1998).Google Scholar