Hostname: page-component-788cddb947-2s2w2 Total loading time: 0 Render date: 2024-10-19T01:12:39.387Z Has data issue: false hasContentIssue false

Assessment of trends in the electrochemical CO2 reduction and H2 evolution reactions on metal nanoparticles

Published online by Cambridge University Press:  14 August 2017

Dominic R. Alfonso*
Affiliation:
National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, USA
Douglas R. Kauffman
Affiliation:
National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, USA
*
Address all correspondence to Dominic R. Alfonso at alfonso@netl.doe.gov
Get access

Abstract

We used density functional theory to investigate the electrochemical CO2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H2 evolution is the first reaction to be energetically allowed at zero applied bias.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whipple, D.T. and Kenis, P.J.: Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451 (2010).Google Scholar
2.Hori, Y.: Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry, edited by Vayenas, C.G., White, R.E., and Gamboa-Aldeco, M.E. (Springer, New York, 2008, p. 1).Google Scholar
3.Gattrell, M., Gupta, N., and Co, A.: A review of the aqeous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electrochem. Chem. 594, 1 (2006).Google Scholar
4.Aresta, M.: Carbon Dioxide as Chemical Feedstock (Wiley, Wienheim, 2010).Google Scholar
5.Ganesh, I.: Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunity. Renew. Sustain. Energy Rev. 31, 221 (2014).Google Scholar
6.Benson, E.E., Kubiak, C.P., Sathrum, A.J., and Smieja, J.M.: Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89 (2009).Google Scholar
7.Zhu, W., Michalski, R., Metin, O., Lv, H., Guo, S., Wright, C.J., Sun, X., Peterson, A.A., and Sun, S.: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833 (2013).Google Scholar
8.Mistry, H., Reske, R., Zeng, Z., Zhao, Z-J., Greeley, J., Strasser, P., and Roldan Cuenya, B.: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473 (2014).Google Scholar
9.Reske, R., Mistry, H., Behafarid, F., Cuenya, B., and Strasser, P.: Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978 (2014).Google Scholar
10.Gao, D., Zhou, H., Wang, J., Miao, S., Yang, F., Wang, G., Wang, J., and Bao, X.: Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288 (2012).Google Scholar
11.Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).Google Scholar
12.Kresse, G. and Furthmüller, J.: Effeciency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).Google Scholar
13.Perdew, J.P., Burke, K., and Enzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
14.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 59, 1758 (1999).Google Scholar
15.Tang, W., Zhang, L., and Henkelman, G.: Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction. J. Phys. Chem. Lett. 2, 1328 (2011).Google Scholar
16.Cramer, C.J.: Essentials of Computational Chemistry: Theories and Models, 2nd ed. (Wiley: West Sussex, 2004).Google Scholar
17.Peterson, A.A., Abild-Pedersen, F., Studt, F., Rossmeisl, J., and Norskov, J.K.: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010).Google Scholar
18.Hansen, H.A., Varley, J.B., Peterson, A.A., and Norskov, J.: Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388 (2013).Google Scholar
19.Zhu, W., Zhang, W.J., Zhang, H., Lv, H., Li, Q., Michalski, R., Peterson, A.A., and Sun, S.: Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132 (2014).Google Scholar
20.Hammer, B., Hansen, L.B., and Norskov, J.: Improved adsorption energetics within density functional theory using revised Perdew–Burke–Enzerhoff functionals. Phys. Rev. B 59, 7413 (1999).Google Scholar
21.Back, S., Yeom, M.S., and Jung, Y.: Active sites of au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089 (2015).Google Scholar
22.Gao, D., Zhou, H., Wang, J., Miao, S., Yang, F., Wang, G., Wang, J., and Bao, X.: Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288 (2015).Google Scholar
23.Tripkovic, V., Vanin, M., Karamad, M., Bjorketum, M.E., Jacobsen, K.W., Thygesen, K.S., and Rossmeisl, J.: Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187 (2013).Google Scholar
Supplementary material: File

Alfonso and Kauffman supplementary material

Figure S1

Download Alfonso and Kauffman supplementary material(File)
File 89.1 KB