Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T04:17:34.023Z Has data issue: false hasContentIssue false

Bacterial inactivation characteristics of magnesium–calcium–zinc alloys for bone implants

Published online by Cambridge University Press:  30 October 2020

Jaehyoung Son
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, TX77845, USA
Jun Kyun Oh
Affiliation:
Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do16890, Republic of Korea
Dae Hyun Cho
Affiliation:
Hyundai Steel, 1480 Bukbusaneopno, Songak-eup, Dangjin-si, Chungchungnam-do31719, Republic of Korea
Mustafa Akbulut*
Affiliation:
Department of Materials Science and Engineering and Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77845, USA
Winfried Teizer*
Affiliation:
Department of Physics and Astronomy and Department of Materials Science, Texas A&M University, College Station, TX77845, USA
*
Address all correspondence to W. Teizer at teizer@tamu.edu or M. Akbulut at makbulut@tamu.edu
Address all correspondence to W. Teizer at teizer@tamu.edu or M. Akbulut at makbulut@tamu.edu
Get access

Abstract

The understanding of adhesion and survival behavior of bacterial pathogens on implant surfaces are critical to control and reduce implant-associated infections. Herein, the authors investigate the interactions of Staphylococcus aureus, one of the most prevalent causes of implant infections, with Mg–4Zn–0.5Ca implants. It was found that within 60 min of exposure, 99.1% of adherent bacteria were inactivated. The combination of unique mechanical properties, biodegradation kinetics, and antimicrobial characteristics of Mg–4Zn–0.5Ca alloy makes it a promising candidate for future implant applications.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Both authors contributed equally to this work.

References

Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H.: In vivo corrosion of fourmagnesium alloys and the associated bone response. Biomaterials 26, 35573563 (2005).10.1016/j.biomaterials.2004.09.049CrossRefGoogle ScholarPubMed
Phyoungoinern, G.E.J., Brundavanam, S., and Fawcett, D.: Biomedical magnesium alloys: a review of material properties,surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2, 218240 (2012).Google Scholar
Veerachamy, S., Yarlagadda, T., Manivasagam, G., and Yarlagadda, P.K.: Proceedings of the institution of mechanical engineers, part H: journal of engineering in medicine. Proc. Inst. Mech. Eng. H 228, 10831099 (2014).10.1177/0954411914556137CrossRefGoogle Scholar
Parveen, S., Taranum, R., and Mittapally, S.: Metal ions as antibacterial agents. J. Drug Deliv. Ther. 8, 411419 (2018).Google Scholar
Marx, D.E. and Barillo, D.J.: Silverin medicine: the basic science. Burns 40, S9S18 (2014).10.1016/j.burns.2014.09.010CrossRefGoogle Scholar
Song, G.L. and Atrens, A.: Corrosion mechanismsof magnesium alloys. Adv. Eng. Mater. 1, 1133 (1999).10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N3.0.CO;2-N>CrossRefGoogle Scholar
Virtanen, S.: Biodegradable Mg and Mgalloys: corrosion and biocompatibility. Mater. Sci. Eng. B 176, 16001608 (2011).10.1016/j.mseb.2011.05.028CrossRefGoogle Scholar
Oh, J.K., Yegin, Y., Yang, F., Zhang, M., Li, J., Huang, S., Verkhoturov, S.V., Schweikert, E.A., Perez-Lewis, K., Scholar, E.A., Taylor, T.M., Castillo, A., Cisneros-Zevallos, L., Min, Y., and Akbulut, M.: The influence of surface chemistry on the kinetics and thermodynamicsof bacterial adhesion. Sci. Rep. 8, 113 (2018).10.1038/s41598-018-35343-1CrossRefGoogle ScholarPubMed
Oh, J.K., Lu, X., Min, Y., Cisneros-Zevallos, L., and Akbulut, M.: Bacterially antiadhesive, optically transparent surfaces inspired from rice leaves. Appl. Mater. Interfaces 7, 1927419281 (2015).10.1021/acsami.5b05198CrossRefGoogle ScholarPubMed
Jafari, S., Harandi, S.E., and Raman, R.K.S.: A review of stress-corrosion cracking and corrosion fatigue of magnesiumalloys for biodegradable implant applications. JOM 67, 11431153 (2015).10.1007/s11837-015-1366-zCrossRefGoogle Scholar
Helbig, R., Günther, D., Friedrichs, J., Rößler, F., Lasagni, A., and Werner, C.: The impact of structure dimensions on initial bacterial adhesion. Biomater. Sci. 4, 10741078 (2016).10.1039/C6BM00078ACrossRefGoogle ScholarPubMed
He, G., Wu, Y., Zhang, Y., Zhu, Y., Liu, Y., Li, N., Li, M., Zheng, G., He, B., Yin, Q., Zheng, Y., and Mao, C.: Addition of Zn to theternary Mg–Ca–Sr alloys significantly improves their antibacterial properties. J. Mater. Chem. B 3, 66766689 (2015).10.1039/C5TB01319DCrossRefGoogle Scholar
Jiang, W., Wanga, J., Liu, Q., Zhao, W., Jiang, D., and Guo, S.: Low hydrogen release behavior and antibacterial property of Mg-4Zn-xSn alloys. Mater. Lett. 241, 8891 (2019).10.1016/j.matlet.2019.01.048CrossRefGoogle Scholar
Qin, H., Zhao, Y., Cheng, M., Wang, Q., Wang, Q., Wang, J., Jiang, Y., An, Z., and Zhang, X.: Anti-biofilm properties of magnesium metalvia alkaline pH. RSC Adv. 5, 2143421444 (2015).10.1039/C5RA00027KCrossRefGoogle Scholar
Lowy, F.D.: Staphylococcus Aureus Infections. New. Engl. J. Med. 339, 520532 (1998).10.1056/NEJM199808203390806CrossRefGoogle ScholarPubMed
Gorman, S.P. and Scott, E.M.: Antimicrobial activity uses and mechanism of action of glutaraldehyde. J. Appl. Bacteriol. 48, 161190 (1980).10.1111/j.1365-2672.1980.tb01217.xCrossRefGoogle ScholarPubMed