Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T15:28:19.720Z Has data issue: false hasContentIssue false

Three-dimensional microscale flow of polymer coatings on glass during indentation

Published online by Cambridge University Press:  17 October 2017

L. R. Bartell*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853, USA
N. Y. C. Lin
Affiliation:
Department of Physics, Cornell University, Ithaca, New York, 14853, USA
J. L. Lyon
Affiliation:
Corning Research and Development Corporation, Corning, New York, 14831, USA
M. L. Sorensen
Affiliation:
Corning Research and Development Corporation, Corning, New York, 14831, USA
D. A. Clark
Affiliation:
Corning Research and Development Corporation, Corning, New York, 14831, USA
M. J. Lockhart
Affiliation:
Corning Research and Development Corporation, Corning, New York, 14831, USA
J. R. Matthews
Affiliation:
Corning Research and Development Corporation, Corning, New York, 14831, USA
G. S. Glaesemann
Affiliation:
Corning Research and Development Corporation, Corning, New York, 14831, USA
M. E. DeRosa
Affiliation:
Corning Research and Development Corporation, Corning, New York, 14831, USA
I. Cohen
Affiliation:
Department of Physics, Cornell University, Ithaca, New York, 14853, USA
*
*Address all correspondence to Lena R. Bartell at lrb89@cornell.edu
Get access

Abstract

We present an indentation-scope that interfaces with confocal microscopy, enabling direct observation of the three-dimensional (3D) microstructural response of coatings on substrates. Using this method, we compared microns-thick polymer coatings on glass with and without silica nanoparticle filler. Bulk force data confirmed the >30% modulus difference, while microstructural data further revealed slip at the glass-coating interface. Filled coatings slipped more and about two times faster, as reflected in 3D displacement and von Mises strain fields. Overall, these data indicate that silica-doping of coatings can dramatically alter adhesion. Moreover, this method compliments existing theoretical and modeling approaches for studying indentation in layered systems.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Garcia Parejo, P., Zayat, M., and Levy, D.: Highly efficient UV-absorbing thin-film coatings for protection of organic materials against photodegradation. J. Mater. Chem. 16, 2165 (2006).CrossRefGoogle Scholar
2. Hu, S., Lewis, N.S., Ager, J.W., Yang, J., McKone, J.R., and Strandwitz, N.C.: Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119, 24201 (2015).CrossRefGoogle Scholar
3. Wang, D. and Bierwagen, G.P.: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64, 327 (2009).CrossRefGoogle Scholar
4. Ritter, J.E., Gu, W., and Lardner, T.J.: Effectiveness of polymer coatings on reducing indention damage in glass. Polym. Eng. Sci. 32, 1372 (1992).CrossRefGoogle Scholar
5. Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Eger, C., Sprenger, S., and Egan, D.: The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J. Mater. Sci. 40, 5083 (2005).CrossRefGoogle Scholar
6. Ragosta, G., Abbate, M., Musto, P., Scarinzi, G., and Mascia, L.: Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46, 10506 (2005).CrossRefGoogle Scholar
7. Zhang, H., Zhang, Z., Friedrich, K., and Eger, C.: Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54, 1833 (2006).CrossRefGoogle Scholar
8. Hsieh, T.H., Kinloch, A.J., Masania, K., Lee, J.S., Taylor, A.C., and Sprenger, S.: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45, 1193 (2010).CrossRefGoogle Scholar
9. Ritter, J.E., Sioui, D.R., and Lardner, T.J.: Indentation behavior of polymer coatings on glass. Polym. Eng. Sci. 32, 1366 (1992).CrossRefGoogle Scholar
10. Ritter, J.E., Lardner, T.J., Rosenfeld, L., and Lin, M.R.: Measurement of adhesion of thin polymer coatings by indentation. J. Appl. Phys. 66, 3626 (1989).CrossRefGoogle Scholar
11. Chai, H., Lawn, B., and Wuttiphan, S.: Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 14, 3805 (1999).CrossRefGoogle Scholar
12. Bull, S.J.: A simple method for the assessment of the contact modulus for coated systems. Philos. Mag. 95, 1907 (2015).CrossRefGoogle Scholar
13. Lee, D., Rahman, M.M., Zhou, Y., and Ryu, S.: Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31, 9684 (2015).CrossRefGoogle ScholarPubMed
14. King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).CrossRefGoogle Scholar
15. Hakiri, N., Matsuda, A., and Sakai, M.: Instrumented indentation microscope applied to the elastoplastic indentation contact mechanics of coating/substrate composites. J. Mater. Res. 24, 1950 (2009).CrossRefGoogle Scholar
16. Silbernagl, D. and Cappella, B.: Mechanical properties of thin polymer films on stiff substrates. Scanning 32, 282 (2010).CrossRefGoogle ScholarPubMed
17. Bhattacharya, A.K. and Nix, W.D.: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solids Struct. 24, 1287 (1988).CrossRefGoogle Scholar
18. Hirst, W. and Howse, M.G.J.W.: The indentation of materials by wedges. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 311, 429 (1969).Google Scholar
19. Gao, X.-L., Jing, X.N., and Subhash, G.: Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43, 2193 (2006).CrossRefGoogle Scholar
20. Ritter, J.E. and Rosenfeld, L.G.: Use of the indentation technique for studying delamination of polymeric coatings. J. Adhes. Sci. Technol. 4, 551 (1990).CrossRefGoogle Scholar
21. Bull, S.J.: Nanoindentation of coatings. J. Phys. Appl. Phys. 38, R393 (2005).CrossRefGoogle Scholar
22. Li, M., Palacio, M.L., Barry Carter, C., and Gerberich, W.W.: Indentation deformation and fracture of thin polystyrene films. Thin Solid Films 416, 174 (2002).CrossRefGoogle Scholar
23. Lin, N.Y.C., McCoy, J., Cheng, X., Leahy, B., Israelachvili, J.N., and Cohen, I.: A multi-axis confocal rheoscope for studying shear flow of structured fluids. Rev. Sci. Instrum. 85, 033905 (2014).CrossRefGoogle ScholarPubMed
24. Crocker, J.C. and Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298 (1996).CrossRefGoogle Scholar
25. Bartell, L.: Barnes interpolation (Barnes objective analysis). Version 1.3. MATLAB Central File Exchange.Google Scholar
26. Liu, W. and Long, R.: Constructing continuous strain and stress fields from spatially discrete displacement data in soft materials. J. Appl. Mech.-Trans. Asme 83, 011006 (2016).CrossRefGoogle Scholar
27. Lee, J. and Yee, A.F.: Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 41, 8363 (2000).CrossRefGoogle Scholar
28. Gossweiler, G.R., Hewage, G.B., Soriano, G., Wang, Q., Welshofer, G.W., Zhao, X., and Craig, S.L.: Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216 (2014).CrossRefGoogle ScholarPubMed
29. Celestine, A.-D.N., Beiermann, B.A., May, P.A., Moore, J.S., Sottos, N.R., and White, S.R.: Fracture-induced activation in mechanophore-linked, rubber toughened PMMA. Polymer 55, 4164 (2014).CrossRefGoogle Scholar
Supplementary material: File

Bartell et al supplementary material

Bartell et al supplementary material 1

Download Bartell et al supplementary material(File)
File 85.6 MB