Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T09:51:58.479Z Has data issue: false hasContentIssue false

Ab Initio Analysis of Charge Carrier Dynamics in Organic-Inorganic Lead Halide Perovskite Solar Cells

Published online by Cambridge University Press:  02 September 2015

Dakota Junkman
Affiliation:
Department of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, U.S.A.
Dayton J. Vogel
Affiliation:
Department of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, U.S.A.
Yulun Han
Affiliation:
Department of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, U.S.A.
Dmitri S. Kilin
Affiliation:
Department of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, U.S.A.
Get access

Abstract

Today’s conversion of solar energy into electricity is based on silicon, which is pure, eventually crystalline, and its most efficient transitions are away from solar radiation maximum. The continuous search of efficient photovoltaic materials has recently focused on lead-halide organic-inorganic perovskite materials due to the very flexible, sustainable, and forgiving procedure of their fabrication, which is successful even if the concentrations of precursors, and temperature regimes deviate from optimal values. In addition to simple fabrication, this class of materials provides impressively high efficiency of photovoltaic (PV) cells. Attention to these materials helps to understand the mechanisms of their high efficiencies and to identify other materials with same type of properties. This work presents computational analysis of photo-induced processes in perovskite materials at ambient temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, X.; Zhao, W.; Cui, H.; Xie, Y. a.; Wang, Y.; Xu, T.; Huang, F. Organic-Inorganic Halide Perovskite Based Solar Cells - Revolutionary Progress in Photovoltaics. Inorganic Chemistry Frontiers 2015, 2, 315335.CrossRefGoogle Scholar
Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and Crystal Chemistry of the Hybrid Perovskite (Ch3nh3)Pbi3 for Solid-State Sensitised Solar Cell Applications. Journal of Materials Chemistry A 2013, 1, 56285641.CrossRefGoogle Scholar
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 17641769.CrossRefGoogle ScholarPubMed
Park, B.-w.; Philippe, B.; Gustafsson, T.; Sveinbjörnsson, K.; Hagfeldt, A.; Johansson, E. M. J.; Boschloo, G. Enhanced Crystallinity in Organic–Inorganic Lead Halide Perovskites on Mesoporous Tio2 Via Disorder–Order Phase Transition. Chem. Mater. 2014, 26, 44664471.CrossRefGoogle Scholar
Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite Ch3nh3pbi3–Xclx. The Journal of Physical Chemistry Letters 2014, 5, 13001306.CrossRefGoogle ScholarPubMed
Pellet, N.; Teuscher, J.; Maier, J.; Grätzel, M. Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange. Chem. Mater. 2015, 27, 21812188.CrossRefGoogle Scholar
Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy & Environmental Science 2014, 7, 30613068.CrossRefGoogle Scholar
Stamplecoskie, K. G.; Manser, J. S.; Kamat, P. V. Dual Nature of the Excited State in Organic-Inorganic Lead Halide Perovskites. Energy & Environmental Science 2015, 8, 208215.CrossRefGoogle Scholar
Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P. Room-Temperature Crystallization of Hybrid-Perovskite Thin Films Via Solvent-Solvent Extraction for High-Performance Solar Cells. Journal of Materials Chemistry A 2015, 3, 81788184.CrossRefGoogle Scholar
Bi, D.; El-Zohry, A. M.; Hagfeldt, A.; Boschloo, G. Improved Morphology Control Using a Modified Two-Step Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2014, 6, 1875118757.CrossRefGoogle ScholarPubMed
Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395398.CrossRefGoogle ScholarPubMed
Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D. High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 2015, 347, 522525.CrossRefGoogle ScholarPubMed
Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nat Mater 2015, advance online publication .CrossRefGoogle Scholar
Im, J.-H.; Luo, J.; Franckevičius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Park, N.-G. Nanowire Perovskite Solar Cell. Nano Lett. 2015, 15, 21202126.CrossRefGoogle ScholarPubMed
Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758764.CrossRefGoogle ScholarPubMed
Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D. L.; Yang, S. Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. J. Am. Chem. Soc. 2014, 136, 37603763.CrossRefGoogle ScholarPubMed
Gao, X.; Li, J.; Baker, J.; Hou, Y.; Guan, D.; Chen, J.; Yuan, C. Enhanced Photovoltaic Performance of Perovskite Ch3nh3pbi3 Solar Cells with Freestanding Tio2 Nanotube Array Films. Chem. Commun. 2014, 50, 63686371.CrossRefGoogle Scholar
Jiang, Q.; Sheng, X.; Li, Y.; Feng, X.; Xu, T. Rutile Tio2 Nanowire-Based Perovskite Solar Cells. Chem. Commun. 2014, 50, 1472014723.CrossRefGoogle ScholarPubMed
Zhao, Y.; Nardes, A. M.; Zhu, K. Solid-State Mesostructured Perovskite Ch3nh3pbi3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. The Journal of Physical Chemistry Letters 2014, 5, 490494.CrossRefGoogle ScholarPubMed
Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic Ch3nh3pbi3. Science 2013, 342, 344347.CrossRefGoogle ScholarPubMed
Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. Transformation of the Excited State and Photovoltaic Efficiency of Ch3nh3pbi3 Perovskite Upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 2015, 137, 15301538.CrossRefGoogle ScholarPubMed
Ledinský, M.; Löper, P.; Niesen, B.; Holovský, J.; Moon, S.-J.; Yum, J.-H.; De Wolf, S.; Fejfar, A.; Ballif, C. Raman Spectroscopy of Organic–Inorganic Halide Perovskites. The Journal of Physical Chemistry Letters 2015, 6, 401406.CrossRefGoogle ScholarPubMed
Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5, 15111515.CrossRefGoogle ScholarPubMed
Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumuller, T.; Christoforo, M. G.; McGehee, M. D. Hysteresis and Transient Behavior in Current-Voltage Measurements of Hybrid-Perovskite Absorber Solar Cells. Energy & Environmental Science 2014, 7, 36903698.CrossRefGoogle Scholar
De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters 2014, 5, 10351039.CrossRefGoogle ScholarPubMed
Juarez-Perez, E. J.; Sanchez, R. S.; Badia, L.; Garcia-Belmonte, G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5, 23902394.CrossRefGoogle ScholarPubMed
Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 25842590.CrossRefGoogle ScholarPubMed
Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices. Nat Mater 2015, 14, 193198.CrossRefGoogle ScholarPubMed
Yang, S. Y.; Seidel, J; Byrnes, S. J.; Shafer, P; Yang, C. H.; Rossell, M. D.; Yu, P; Chu, Y. H.; Scott, J. F.; Ager, J. W.; Martin, L. W.; RameshR Above-Bandgap Voltages from Ferroelectric Photovoltaic Devices. Nat Nano 2010, 5, 143147.CrossRefGoogle Scholar
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341344.CrossRefGoogle Scholar
Chen, H.-W.; Sakai, N.; Ikegami, M.; Miyasaka, T. Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6, 164169.CrossRefGoogle ScholarPubMed
Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C 2013, 117, 1390213913.CrossRefGoogle Scholar
Even, J.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Lauret, J.-S.; Sapori, D.; Deleporte, E. Solid-State Physics Perspective on Hybrid Perovskite Semiconductors. The Journal of Physical Chemistry C 2015.CrossRefGoogle Scholar
Bulik, I. W.; Scalmani, G.; Frisch, M. J.; Scuseria, G. E. Noncollinear Density Functional Theory Having Proper Invariance and Local Torque Properties. Phys. Rev. B 2013, 87, 035117.CrossRefGoogle Scholar
Barth, U. v.; Hedin, L. A Local Exchange-Correlation Potential for the Spin Polarized Case. I. Journal of Physics C: Solid State Physics 1972, 5, 16291642.CrossRefGoogle Scholar
Kubler, J.; Hock, K.-H.; Sticht, J.; Williams, A. R. Density Functional Theory of Non-Collinear Magnetism. Journal of Physics F: Metal Physics 1988, 18, 469483.CrossRefGoogle Scholar
Yao, G.; Huang, S.; Berry, M. T.; May, P. S.; Kilin, D. S. Non-Collinear Spin Dft for Lanthanide Ions in Doped Hexagonal Nayf4. Mol. Phys. 2014, 112, 546556.CrossRefGoogle Scholar
Brivio, F.; Butler, K. T.; Walsh, A.; van Schilfgaarde, M. Relativistic Quasiparticle Self-Consistent Electronic Structure of Hybrid Halide Perovskite Photovoltaic Absorbers. Phys. Rev. B 2014, 89, 155204.CrossRefGoogle Scholar
Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Lett. 2014, 14, 36083616.CrossRefGoogle ScholarPubMed
Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry Letters 2013, 4, 29993005.CrossRefGoogle Scholar
Stroppa, A.; Di Sante, D.; Barone, P.; Bokdam, M.; Kresse, G.; Franchini, C.; Whangbo, M.-H.; Picozzi, S. Tunable Ferroelectric Polarization and Its Interplay with Spin–Orbit Coupling in Tin Iodide Perovskites. Nat Commun 2014, 5, 5900-5901-5908.CrossRefGoogle ScholarPubMed
De Angelis, F. Modeling Materials and Processes in Hybrid/Organic Photovoltaics: From Dye-Sensitized to Perovskite Solar Cells. Acc. Chem. Res. 2014, 47, 33493360.CrossRefGoogle ScholarPubMed
Umari, P.; Mosconi, E.; De Angelis, F. Relativistic Gw Calculations on Ch3nh3pbi3 and Ch3nh3sni3 Perovskites for Solar Cell Applications. Sci. Rep. 2014, 4, 4467.CrossRefGoogle ScholarPubMed
Towfiq, A.; La-o-vorakiat, C.; Salim, T.; Lam, Y. M.; Elbert, E. M. C.; Jian-Xin, Z. Optical Properties of Organometallic Perovskite: An Ab Initio Study Using Relativistic Gw Correction and Bethe-Salpeter Equation. EPL (Europhysics Letters) 2014, 108, 67015.Google Scholar
Onida, G.; Reining, L.; Rubio, A. Electronic Excitations: Density-Functional Versus Many-Body Green's-Function Approaches. Reviews of Modern Physics 2002, 74, 601659.CrossRefGoogle Scholar
Strinati, G. Effects of Dynamical Screening on Resonance at Inner-Shell Thresholds in Semiconductors. Phys. Rev. B 1984, 29, 57185726.CrossRefGoogle Scholar
Hybertsen, M. S.; Louie, S. G. Electron Correlation in Semiconductors and Insulators: Band Gaps and Quasiparticle Energies. Phys. Rev. B 1986, 34, 53905413.CrossRefGoogle ScholarPubMed
Feng, J.; Xiao, B. Effective Masses and Electronic and Optical Properties of Nontoxic Masnx3 (X = Cl, Br, and I) Perovskite Structures as Solar Cell Absorber: A Theoretical Study Using Hse06. The Journal of Physical Chemistry C 2014, 118, 1965519660.CrossRefGoogle Scholar
Mosconi, E.; Quarti, C.; Ivanovska, T.; Ruani, G.; De Angelis, F. Structural and Electronic Properties of Organo-Halide Lead Perovskites: A Combined Ir-Spectroscopy and Ab Initio Molecular Dynamics Investigation. PCCP 2014, 16, 1613716144.CrossRefGoogle ScholarPubMed
Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; Angelis, F. D. The Raman Spectrum of the Ch3nh3pbi3 Hybrid Perovskite: Interplay of Theory and Experiment. The Journal of Physical Chemistry Letters 2014, 5, 279284.CrossRefGoogle ScholarPubMed
Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density Functional Theory. Phys. Rev. Lett. 1985, 55, 24712474.CrossRefGoogle ScholarPubMed
Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press, 2009.CrossRefGoogle Scholar
Frost, J. M.; Butler, K. T.; Walsh, A. Molecular Ferroelectric Contributions to Anomalous Hysteresis in Hybrid Perovskite Solar Cells. APL Materials 2014, 2, 081506.CrossRefGoogle Scholar
Lindblad, R.; Bi, D.; Park, B.-w.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M. J.; Rensmo, H. Electronic Structure of Tio2/Ch3nh3pbi3 Perovskite Solar Cell Interfaces. The Journal of Physical Chemistry Letters 2014, 5, 648653.CrossRefGoogle ScholarPubMed
Quarti, C.; Mosconi, E.; De Angelis, F. Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation. Chem. Mater. 2014, 26, 65576569.CrossRefGoogle Scholar
Quarti, C.; Mosconi, E.; De Angelis, F. Structural and Electronic Properties of Organo-Halide Hybrid Perovskites from Ab Initio Molecular Dynamics. PCCP 2015, 17, 93949409.CrossRefGoogle ScholarPubMed
Nunes, R. W.; Gonze, X. Berry-Phase Treatment of the Homogeneous Electric Field Perturbation in Insulators. Phys. Rev. B 2001, 63, 155107.CrossRefGoogle Scholar
Kawai, H.; Giorgi, G.; Marini, A.; Yamashita, K. The Mechanism of Slow Hot-Hole Cooling in Lead-Iodide Perovskite: First-Principles Calculation on Carrier Lifetime from Electron–Phonon Interaction. Nano Lett. 2015.CrossRefGoogle ScholarPubMed
Kilina, S.; Kilin, D.; Tretiak, S. Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chem. Rev. 2015, in print, 10.1021/acs.chemrev.1025b00012.Google Scholar
Hammes-Schiffer, S.; Tully, J. C. Proton Transfer in Solution – Molecular Dynamics with Quantum Transitions. J. Chem. Phys. 1994, 101, 46574667.CrossRefGoogle Scholar
Redfield, A. G. On the Theory of Relaxation Processes. Ibm Journal of Research and Development 1957, 1, 1931.CrossRefGoogle Scholar
Kilin, D. S.; Micha, D. A. Relaxation of Photoexcited Electrons at a Nanostructured Si(111) Surface. Journal of Physical Chemistry Letters 2010, 1, 10731077.CrossRefGoogle Scholar
Inerbaev, T. M.; Hoefelmeyer, J. D.; Kilin, D. S. Photoinduced Charge Transfer from Titania to Surface Doping Site. The Journal of Physical Chemistry C 2013, 117, 96739692.CrossRefGoogle ScholarPubMed
Han, Y.; Micha, D.; Kilin, D. Ab Initio Study of the Photocurrent at the Au/Si Metal Semiconductor Nano-Interface. Mol. Phys. 2015, 113, 327335.CrossRefGoogle Scholar
Kilin, D. S.; Micha, D. A. Surface Photovoltage at Nanostructures on Si Surfaces: Ab Initio Results. Journal of Physical Chemistry C 2009, 113, 35303542.CrossRefGoogle Scholar
Vazhappilly, T.; Kilin, D., S. ; Micha, D., A. Modeling the Surface Photovoltage of Silicon Slabs with Varying Thickness. J. Phys.: Condens. Matter 2015, 27, 134204.Google ScholarPubMed
Chen, J.; Schmitz, A.; Inerbaev, T.; Meng, Q.; Kilina, S.; Tretiak, S.; Kilin, D. S. First-Principles Study of P-N-Doped Silicon Quantum Dots: Charge Transfer, Energy Dissipation, and Time-Resolved Emission. The Journal of Physical Chemistry Letters 2013, 4, 29062913.CrossRefGoogle Scholar
COD Http://Www.Crystallography.Net/Cod/4335634.Html?Cif=4335634. Open Crystallography Database 2015, 4335634.Google Scholar
Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 1116911186.CrossRefGoogle ScholarPubMed