Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-14T04:51:39.071Z Has data issue: false hasContentIssue false

About Chemical Bonds in Misfit Layer Chalcogenides

Published online by Cambridge University Press:  15 February 2011

J. Rouxel
Affiliation:
Institut des Matériaux de Nantes, UMR CNRS No 110- Universitéde Nantes, BP 32229, 2 rue de la Houssinière, 44322 NANTES Cedex 3 -, France.
A. Meerschaut
Affiliation:
Institut des Matériaux de Nantes, UMR CNRS No 110- Universitéde Nantes, BP 32229, 2 rue de la Houssinière, 44322 NANTES Cedex 3 -, France.
Get access

Abstract

On the basis of crystal structures and electronic properties, a critical discussion of the nature of chemical bonds in misfit layered chalcogenides is given. It concerns also the various mechanisms of non-stoichiometry that are present in these incommensurate structures. Misfit chalcogenides with a LnY slab opposed to TY2 ones (T = Ti, V, Cr, Nb, Ta) appear as infinite two-dimensional intercalation compounds with an electron donation from LnY to TY2. In case of PbY or SnY slabs a more complex mechanism involving coupled substitutions in both slabs seems to prevail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For detailed description see (a) Mackovicky, E. and Hyde, B.G., Struct. Bonding 46, p. 101 (1981),Google Scholar
(b) Incommensurate sandwiched layered compounds, Meerschaut, A. Ed. (Mat. Sci. Forum 100, Trans Tech. Pub. 1992),Google Scholar
(c) Rouxel, J., Meerschaut, A., Wiegers, G.A., J. Alloys comp. 229, p. 144157 (1995),Google Scholar
(d) Wiegers, G.A., Prog. Solid State Chem. Elsevier Science Ltd 24, p. 1 (1996).Google Scholar
2. Grey, I.E., J.Solid State Chem. 11, p. 128 (1973).Google Scholar
3. Anderson, J.S., J. Chem. Soc., Dalton, p. 1107 (1973).Google Scholar
4. Novotný, H., Jeitschko, W. and Parme, E., Acta Cryst. 22, p. 417 (1967).Google Scholar
5. van Smaalen, S., Incommensurate sandwiched layered compounds, Meerschaut, A. Ed. (Mat. Sci. Forum 100, Trans Tech. Pub. 1992)Google Scholar
6. Wiegers, G.A., Meetsma, A., Haange, R.J., van Smaalen, S., de Boer, J.L., Meerschaut, A., Rabu, P. and Rouxel, J., Acta Cryst. B46, p. 324332 (1990).Google Scholar
7. Meerschaut, A., Guemas, L., Auriel, C. and Rouxel, J., Eur. J.Solid State Inorg. Chem. 27, p. 557(1990).Google Scholar
8. Auriel, C., Meerschaut, A., Roesky, R. and Rouxel, J., Eur. J.Solid State Inorg. Chem. 29, p. 1079(1992).Google Scholar
9. Meerschaut, A., Auriel, C. and Rouxel, J., J. Alloys Comp. 183, p. 129 (1992).Google Scholar
10. Oosawa, Y., Gotoh, Y., Akimoto, J., Tsunoda, T., Sohma, M., Jap. J. Appl. Phys. 3IL, p. 1096(1992).Google Scholar
11. Roesky, R., Meerschaut, A., Rouxel, J. and Chen, J., Z. Anorg. Allg. Chem. 619, p. 117 (1993).Google Scholar
12. Auriel, C., Meerschaut, A. and Rouxel, J., Mat. Res. Bull. 28, p. 675 (1993).Google Scholar
13. ren, Y., Meetsma, A., Wiegers, G.A. and van Smaales, S., Acta Cryst. B 52, p. 389 (1996).Google Scholar
14. Herman, -L., Morales, J., Pattanayak, J. and Tirado, J.L., J. Solid State Chem. 100, p. 262 (1992).Google Scholar
Barriga, -C., Lávela, P., Morales, J., Pattanayak, J. and Tirado, J.L., Chem. Mat. 4, p. 1021 (1992).Google Scholar
15. Bonneau, P., Mansot, J.L. and Rouxel, J., Mat. Res. Bull. 28, p. 757 (1993).Google Scholar
16. Hoistad, L.M., Meerschaut, A., Bonneau, P. and Rouxel, J., J.Solid State Chem. 114, p. 435 (1995).Google Scholar
17. Hung, Yi-Chung and Shiou-Jyh, H., Inorg. Chem. 32, p. 5427 (1993).Google Scholar
18. Roesky, R., Meerschaut, A., van der Lee, A. and Rouxel, J., Mat. Res. Bull. 29(11), p. 149 (1994).Google Scholar
19. Lafond, A., Meerschaut, A., Moëlo, Y. and Rouxel, J., C R. Acad. Sc. Paris., serie IIB, 322, p. 165 (1996).Google Scholar
20. Lafond, A., Nader, A., Perrin, S., Moëlo, Y., Briggs, A., Meerschaut, A., Monceau, P. and Rouxel, J., J. Alloys Comp., to be submitted.Google Scholar
21. Suzuki, K., Kojima, N., Ban, T. and Tsujikawa, I., J.Phys. Soc. Japan 59(1), p. 266 (1990)Google Scholar
22. Pena, O., Rabu, P. and Meerschaut, A., J.Phys. Cond. Matter. 3, p. 9929 (1991).Google Scholar
23. Terashima, T., and Kojima, N., J. Phys. Soc. Japan 61(9), p. 3303 (1992).Google Scholar
24. Suzuki, K., Kondo, T., Iwasaki, M. and Enoki, T., Jpn J. Appl. Phys. 32(32–3), p. 341 (1993).Google Scholar
25. Smontara, A., Monceau, P., Guemas, L., Meerschaut, A., Rabu, P. and Rouxel, J., J.Fizika 21(3), p. 201 (1989).Google Scholar
26. Monceau, P., Chen, J., Laborde, O., Briggs, A., Auriel, C., Roesky, R., Meerschaut, A. and Rouxel, J., Physica B 194–196, p. 2361 (1994).Google Scholar
27. Terashima, T., Thesis, University of Kyoto, Japan (1993).Google Scholar
28. Terashima, T. and Kojima, N., J.Phys. Soc. Japan 63(2), p. 658 (1994).Google Scholar
29. Fang, C.M., Baas, J. and Wiegers, G.A., (to be published)Google Scholar
30. Wiegers, G.A., Meetsma, A., Haange, R.J. and de Boer, J.L., Less, J. Commun Metals 68, p. 347(1991).Google Scholar
31. Ettema, A.R.H.F., Wiegers, G.A., Haas, C. and Turner, T.S., Physica Scripta T41, p. 265 (1992).Google Scholar
32. Ettema, A.R.H.F., Haas, C. and Turner, T.S., Phys. Rev. B 47, p. 12794 (1993).Google Scholar
33. Ettema, A.R.H.F. and Haas, C., J.Phys. : Condens. Matter. 5 p. 3817 (1993).Google Scholar
34. Ettema, A.R.H.F., van Smaalen, S., Haas, C. and Turner, T.S., Phys. Rev. B 49, p. 10585 (1994).Google Scholar
35. Ohno, Y., Phys. Rev. B48(8), p. 5515 (1993).Google Scholar
36. Ohno, Y., J; Phys. : Condens. Matter. 4, p. 7815 (1992).Google Scholar
37. Ohno, Y., Phys. Rev. B44(3), p. 1281 (1991).Google Scholar
38. Fang, C.M., Ettema, A.R.H.F., Haas, C., Wiegers, G.A., van Leuken, H. and de Groot, R.A., Phys. Rev. B52(4), p. 2336 (1995).Google Scholar
39. Wiegers, G.A. and Haange, R.J., Eur. J. Solid State Inorg. Chem. 28, p. 1071 (1991).Google Scholar
40. Auriel, C., Meetsma, A., Deudon, C., Baas, J., Wiegers, G.A., Monceau, P. and Chen, C., Eur. J. Solid State Inorg. Chem. 32, p. 947 (1995).Google Scholar
41. Onoda, M., Kato, K., Gotoh, Y., Oosawa, Y., Acta Cryst. B 46, p. 487 (1990).Google Scholar
42. Wiegers, G.A., van der Meer, R., van Heiningen, H., Kloosterboer, H.J. and Alberink, A.J.A., Mat. Res. Bull. 9, p. 1266 (1993).Google Scholar
43. van Bruggen, C.F. and Wiegers, G.A., J. Solid State Chem. 27, p. 9 (1979).Google Scholar
44. Gotoh, Y., Goto, M., Kawaguchi, K. and Oosawa, Y., Mat. Res. Bull. 25, p. 307 (1990).Google Scholar
45. Cho, N., Kikkawa, S., Kanamaru, F., Takeda, Y., Yamamoto, O., Kido, H. and Hoshikawa, T., Solid State Ionics 63–65, p. 696 (1993).Google Scholar
46. Kondo, T., Suzuki, K. and Enoki, T., Solid State Commun. 84, p. 999 (1992).Google Scholar
47. Suzuki, K., Kondo, T., Enoki, T. and Bandow, S., Synthetic Metals 55–57, p. 1741 (1993).Google Scholar
48. Takahashi, T., Osaka, S. and Yamada, O., J. Phys. Chem. Solids 43, p. 1131 (1973).Google Scholar
49. Lafond, A. and Meerschaut, A., Mat. Res. Bull. 28, 979 (1993).Google Scholar
50. Murugesan, T., Ramesh, S., Gopalakrishnan, J. and Rao, C.N.R., J. Solid State Chem. 38, p. 165(1981).Google Scholar
51. Rouxel, J., Moëlo, Y., Lafond, A., DiSalvo, F.J., Meerschaut, A. and Roesky, R., Inorg. Chem. 33, p. 3358 (1994).Google Scholar
52. Ren, Y., Baas, J., Meetsma, A., de Boer, J.L. and Wiegers, G.A., Acta Cryst. B 52, p. 398 (1996).Google Scholar
53. Nishikawa, T., Yasni, Y. and Sato, M., J.Phys. Soc. Japan 63(9), p. 3218 (1994).Google Scholar
54. Yasui, Y., Nishikawa, T., Kobayashi, Y., Sato, M., Nishioka, T. and Kontani, M., J. Phys. Soc. Japan 64(10), p. 3890(1995).Google Scholar
55. Cario, L., Johrendt, D., Lafond, A., Felser, C., Meerschaut, A. and Rouxel, J., Phys. Rev. B submitted (1996).Google Scholar
56. Rouxel, J., Chem. Eur. J. 2(9), p. 1053 (1996).Google Scholar
57. Fang, C., Thesis University of Groningen (The Netherlands) (1996).Google Scholar
58. Anderson, O.K., Phys. Rev. B 12, p. 3060 (1975).Google Scholar
59. Anderson, O.K. and Jepsen, O., Phys. Rev. Letters 53, p. 2571 (1984).Google Scholar
60. TB LMTO - ASA 46 Program : a program for ab initio band calculations. Krier, G., Jepsen, O., Burkhardt, A. and Anderson, O.K., Max-Planck-Institut, Germany (1994).Google Scholar
61. Jepsen, O. and Anderson, O.K., Z. Phys. B 97, p. 35 (1995).Google Scholar
62. Fang, M.C., Ettema, A.R.H., Haas, C. and Wiegers, G.A., Phys. Rev. B 52, p. 2336 (1995).Google Scholar
63. Fang, M.C., de Groot, R.A., Wiegers, G.A. and Haas, C., J. Phys. Cond. Matter. 8, p. 1663 (1996).Google Scholar
64. Preliminary calculations (Boucher, F. and Rouxel, J., to be published) are in favor of such interaction. When writing this paper the authors have just been aware of similar proposition: S.P. Abramov, to be published in J. Alloys Comp.(1997).Google Scholar
65. Sandré, E., Bree, R. and Rouxel, J.,, J. Phys. Chem. Solids 50(8), p. 801 (1989).Google Scholar
66. Moëlo, Y., Meerschaut, A., Rouxel, J. and Auriel, C., Chem. Mater. 7, p. 1771 (1995).Google Scholar