Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T12:24:10.707Z Has data issue: false hasContentIssue false

1 / f Noise in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

C. Parman
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455, USA
J. Kakalios
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455, USA
Get access

Abstract

Measurements of co-planar current fluctuations in n-type doped hydrogenated amorphous silicon (a-Si:H) find that the spectral density of the noise accurately obeys a 1/f frequency dependence over the frequency range of 1 Hz to 1 kHz for temperatures ranging from room temperature to 450K. The noise displays a power law dependence on the d.c. curent passing through the sample, with a temperature dependent power law exponent. In addition, the resistance of the a-Si:H as a function of time displays switching phenomena; a surprising result given the effective volume ( ∼10-6 cm3) of the sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).CrossRefGoogle Scholar
2. Kakalios, J., Street, R. A. and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).CrossRefGoogle Scholar
3. Dutta, P. and Horn, P. M., Rev. Mod. Phys. 53, 497 (1981).CrossRefGoogle Scholar
4. Kogan, Sh. M., Sov. Phys. Usp. 28, 170 (1985).CrossRefGoogle Scholar
5. Van der Ziel, A., Adv. in Elect, and Electron. Phys. 49. 225 (1979).CrossRefGoogle Scholar
6. Parman, C. and Kakalios, J., to be published.Google Scholar
7. Street, R. A., Knights, J. C. and Biegelsen, D. K., Phys. Rev. B 18, 1880 (1978);CrossRefGoogle Scholar
Kakalios, J. and Street, R. A., Phys. Rev. B 34, 6014 (1986).CrossRefGoogle Scholar
8. Hooge, F. N., Physica B 83, 14 (1976);CrossRefGoogle Scholar
Hooge, F. N., Kleinpenning, T. G. M. and Vandamme, L. K. J., Rep. Prog. Phys. 44, 479 (1981).CrossRefGoogle Scholar
9. Restle, P. J., Weissman, M. B. and Black, R. D., J. Appl. Phys. 54, 5844 (1983);CrossRefGoogle Scholar
Restle, P. J., Hamilton, R. J., Weissman, M. B. amd Love, M. S., Phys. Rev. B 31, 2254 (1985).CrossRefGoogle Scholar
10. Parman, C., Israeloff, N. and Kakalios, J., to be published.Google Scholar
11. Arce, R. and Ley, L., Conf, M.R.S.. Proc. 149, 675(1989).Google Scholar
12. Choi, W. K., Owen, A. E., LeComber, P. G. and Rose, M. J., J. Appl. Phys. 68, 120 (1990).CrossRefGoogle Scholar
13. Kleinpenning, T. G. M., Physica 94B, 141 (1978); Solid State Electronics, 22, 121 (1979).Google Scholar
14. Williams, J. L. and Burdett, R. K., Brit. J. Appl. Phys. 17, 977 (1966).CrossRefGoogle Scholar
15. Williams, J. L. and Stone, , J. Phys. C 5, 2105 (1972).CrossRefGoogle Scholar
16. Furukawa, S., Kagawa, T. and Matsuomoto, N., Solid State Comm. 44, 193 (1982).CrossRefGoogle Scholar
17. Reimer, J. A., Vaughan, R. W. and Knights, J. C., Phys. Rev. Lett. 44, 193 (1980).CrossRefGoogle Scholar
18. Brodsky, M. H., Solid State Comm. 36, 55(1980).CrossRefGoogle Scholar