Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-30T09:26:04.670Z Has data issue: false hasContentIssue false

2D InP etching simulation under high density plasma of chlorine

Published online by Cambridge University Press:  01 February 2011

A. Rhallabi
Affiliation:
Laboratoire des Plasmas et des Couches Minces - IMN, UMR 6502, CNRS – Université de Nantes, 2 rue de La Houssiniere 44322 Nantes, France.
B. Liu
Affiliation:
Laboratoire des Plasmas et des Couches Minces - IMN, UMR 6502, CNRS – Université de Nantes, 2 rue de La Houssiniere 44322 Nantes, France.
G. Marcos
Affiliation:
Laboratoire des Plasmas et des Couches Minces - IMN, UMR 6502, CNRS – Université de Nantes, 2 rue de La Houssiniere 44322 Nantes, France.
J. P. Landesman
Affiliation:
Laboratoire des Plasmas et des Couches Minces - IMN, UMR 6502, CNRS – Université de Nantes, 2 rue de La Houssiniere 44322 Nantes, France.
Get access

Abstract

A gas phase kinetic model of chlorine in an ICP reactor (Inductive Coupled Plasma) combined with a surface model have been developed to study the etching profile evolution of InP material. A gas phase chemistry model is used to predict the main neutral and charged specie fluxes impinging upon etched InP surface. These particle fluxes are then injected as input parameters into both a Monte-Carlo sheath model and a 2D surface model to predict the etch profile topography. The coupling between the gas kinetic model, sheath and surface models allows a direct prediction of the InP etch profile evolution versus reactor parameters (pressure, source power, Cl2 flow rate, DC bias on the substrate‥). A parametric study is carried out to show the role of some plasma parameters on etch rate, anisotropy and adsorbed InP surface state by chlorine.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. François, M. et al., Microelectronic Engineering 61–62, 537 (2002).Google Scholar
2. Marcos, G., Rhallabi, A., Ranson, P., J. Vac. Sci. Technol. A 21, 87 (2003).Google Scholar
3. Rhallabi, A., Catherine, Y., IEEE. Trans. Plasma Science, 19, 270 (1991).Google Scholar
4. Lee, C., Lieberman, M. A., J. Vac. Sci. Technol. A 13, 368 (1995).Google Scholar
5. Manenschijn, A., Janssen, G. and Van der Drift, E., Radelaar, S., J. Appl. Phys. 69, 1253 (1991).Google Scholar
6. Murrell, A. J., Price, R.J., Jackman, R. B. and Foord, J. S., Surface Science 227, 197 (1990).Google Scholar
7. Giapis, K. P., Hwang, G.S., Joubert, O., Microelectronic Engineering 61–62, 835, (2002).Google Scholar