Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-16T19:45:10.292Z Has data issue: false hasContentIssue false

Ab Initio Molecular Dynamics Study of Al, Ga and Si Adsorption on the Si(001) Surface

Published online by Cambridge University Press:  21 February 2011

T. Yamasaki
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
M. Ikeda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Y. Morikawa
Affiliation:
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
K. Terakura
Affiliation:
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan Joint Research Center for Atom Technology, National Institute for Advanced Interdisciplinary Research, 1-1-4 Higashi, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

The adsorption of Al, Ga and Si on the Si(001) surface is studied by the ab initio molecular dynamics (Car-Parrinello) method based on the norm-conserving pseudopotential. In the stable structures obtained for half mono-layer coverage( ө = 1/2), these ad-atoms form dimers, but the dimer configurations are different. Al and Ga atoms form parallel dimers whose dimerization direction is parallel to that of substrate Si-dimers, while adsorbed Si atoms form (dense) orthogonal dimers. The electronic origin of the difference in the stable configurations among Al, Ga and Si ad-atoms is analyzed by calculating the local density of states (LDOS) of each atom.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakahara, H. and Ichikawa, M., Appl. Phys. Lett. 61, 1531 (1992).CrossRefGoogle Scholar
2 Mo, Y.-W. and Lagally, M.G., Surf.Science 248, 313 (1991).CrossRefGoogle Scholar
3 Bedrossian, P. and Efthimios, Kaxiras, Phys. Rev. Lett. 70, 2589 (1993).CrossRefGoogle Scholar
4 Tsao, J.Y., Chason, E., Koeher, U. and Hamers, R., Phys. Rev. B40, 11951 (1989).CrossRefGoogle Scholar
5 Rockett, A., Surf.Science 227, 208 (1990).CrossRefGoogle Scholar
6 Car, R. and Parrinello, M., Phys. Rev.Lett. 55, 2741 (1985).CrossRefGoogle Scholar
7 Nogami, J., Baski, A.A. and Quate, C.F., Phys. Rev. B44, 1415 (1991)CrossRefGoogle Scholar
8 Nogami, J., Sang-il, Park and Quate, C.F., Appl.Phys.Lett. 53, 2086 (1988).CrossRefGoogle Scholar
9 Ide, T., Nishimori, T. and Ichinokawa, T., Surf.Sci. 209, 335 (1989).CrossRefGoogle Scholar
10 Itoh, H., Itoh, J. and Ichinokawa, T., to be published.Google Scholar
11 Northrup, J., Schabel, M.C., Karlsson, C.J. and Uhrberg, R.I.G., Phys.Rev. B44, 13799(1991).CrossRefGoogle Scholar
12 Adams, G.B. and Sankey, O.F., J.Vac.Sci.Technol. Al0, 2046 (1992).CrossRefGoogle Scholar
13 Brocks, G., Kelly, P.J. and Car, R., Phys.Rev.Lett. 70, 2786 (1993).CrossRefGoogle Scholar
14 Yamasaki, T., Ikeda, M., Morikawa, Y. and Terakura, K., in Computer Aided Innovation of New Materials II, edited by Doyama, M., Kihara, J., Tanaka, M. and Yamamoto, R. (Elsevier Science Publishers, 1993) p. 125.Google Scholar
15 Bachelet, G.B., Hamann, D.R. and Schluter, M., Phys.Rev. B26, 4199 (1982).CrossRefGoogle Scholar
16 Kleinman, L. and Bylander, D.M., Phys.Rev.Lett. 48, 4199 (1982).CrossRefGoogle Scholar
17 Williams, A.R. and Soler, J., Bull.Am.Phsy.Soc. 32, 562 (1987).Google Scholar
18 Rath, J. and Freeman, A.J., Phys. Rev. B11, 2109(1975).CrossRefGoogle Scholar
19 Jepsen, O. and Andersen, O.K., Solid State Commun. 9, 1763 (1971).CrossRefGoogle Scholar