Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T18:25:21.326Z Has data issue: false hasContentIssue false

The Absorption of Diamondoids from Time-dependent Density Functional Calculations

Published online by Cambridge University Press:  23 June 2011

Márton Vörös
Affiliation:
Department of Atomic Physics, Budapest University of Technology and Economics, Budafokiút 8., H-1111, Budapest, Hungary
Tamás Demjén
Affiliation:
Hungarian Academy of Sciences, Research Institute for Solid State Physics and Optics, Bu-dapest, POB 49, H-1525, Hungary
Adam Gali
Affiliation:
Department of Atomic Physics, Budapest University of Technology and Economics, Budafokiút 8., H-1111, Budapest, Hungary Hungarian Academy of Sciences, Research Institute for Solid State Physics and Optics, Bu-dapest, POB 49, H-1525, Hungary
Get access

Abstract

Diamondoids are small diamond nanocrystals with perfect hydrogenated surfaces. Recent absorption measurements showed that the spectrum of diamondoids exhibit features that are not understood from the theoretical point of view, e.g. optical gaps are only slightly larger than the gap of bulk diamond which runs against the quantum confinement effect. Previous calcula-tions, even beyond standard density functional theory (DFT), failed to obtain the experimental optical gaps (Eg) of diamondoids. We show that all-electron time-dependent DFT (TD-DFT) calculations including the PBE0 hybrid functional in the TD-DFT kernel are able to provide quantitatively accurate results. Our calculations demonstrate that Rydberg transitions govern the low energy part of the absorption spectrum, even for relatively large nanodiamonds result-ing in low Eg. Since the optical gap of these diamondoids lies in the ultraviolet spectral re-gion, we investigated whether simple adsorbates of the surface are able to shift the gap towards the infrared region. We found that a double bonded sulfur atom at the surface results in a sub-stantial gap reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L. E., J. Chem. Phys. 80, 4403 (1984).Google Scholar
2. Rohlfing, M. and Louie, S. G., Phys. Rev. Lett. 80, 3320 (1998).Google Scholar
3. Vasiliev, I., Öğüt, S. and Chelikowsky, J. R., Phys. Rev. Lett. 86, 1813 (2001).Google Scholar
4. Benedict, L. X. et al. , Phys. Rev. B 68, 085310 (2003).Google Scholar
5. Ramos, L. E., Paier, J., Kresse, G., and Bechstedt, F., Phys. Rev. B 78, 195423 (2008).Google Scholar
6. Dahl, J. E., Liu, S. G., and Carlson, R. M. K., Science 299, 96 (2003).Google Scholar
7. Landt, L. et al. , Phys. Rev. Lett. 103, 047402 (2009).Google Scholar
8. Willey, T. M. et al. , Phys. Rev. Lett. 95, 113401 (2005).Google Scholar
9. Schwertfeger, H., Fokin, A. A., and Schreiner, P. R., Angewandte Chemie International Edi-tion 47, 1022 (2008).Google Scholar
10. Marchand, A. P., Science 299, 52 (2003).Google Scholar
11. Yang, W. L. et al. , Science 316, 1460 (2007).Google Scholar
12. Wang, Y. et al. , Nat. Materials 7, 38 (2008).Google Scholar
13. Romalis, M., Nature 455, 606 (2008).Google Scholar
14. Landt, L. et al. , Phys. Rev. B 80, 205323 (2009).Google Scholar
15. Fokin, A. A. and Schreiner, P. R., Molecular Physics: An International Journal at the Inter-face Between Chemistry and Physics 107, 823 (2009).Google Scholar
16. Perdew, J. P., Ernzerhof, M., and Burke, K., J. Chem. Phys. 105, 9982 (1996).Google Scholar
17. Giannozzi, P. et al. , J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
18. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
19. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
20. Ahlrichs, R. et al. , Chem. Phys. Lett. 162, 165 (1989).Google Scholar
21. Bauernschmitt, R. and Ahlrichs, R., Chem. Phys. Lett. 256, 454 (1996).Google Scholar
22. Schuchardt, K. L. et al. , J. Chem. Inform. and Modeling 47, 1045 (2007).Google Scholar
23. Raty, J. and Galli, G., J. Electroanal. Chem. 584, 9 (2005).Google Scholar
24. Drummond, N. D., Williamson, A. J., Needs, R. J., and Galli, G., Phys. Rev. Lett. 95, 096801 (2005).Google Scholar
25. We used the 1 s Kohn-Sham levels of C-atoms as reference energy.Google Scholar
26. Raymonda, J. W., J. Chem. Phys. 56, 3912 (1972).Google Scholar
27. Shang, Q. Y. and Bernstein, E. R., The Journal of Chemical Physics 100, 8625 (1994).Google Scholar
28. Geluk, H. W. and Schlatmann, J. L. M. A., Tetrahedron 24, 5361 (1968).Google Scholar
29. Greidanus, J. W. and Schwalm, W. J., Canadian Journal of Chemistry 47, 3715 (1969).Google Scholar
30. Puzder, A., Williamson, A. J., Grossman, J. C., and Galli, G., Phys. Rev. Lett. 88, 097401 (2002).Google Scholar
31. Wolkin, M. V. et al. , Phys. Rev. Lett. 82, 197 (1999).Google Scholar
32. Vöoröos, M., De´ak, P., Frauenheim, T., and Gali, A., The Journal of Chemical Physics 133, 064705 (2010).Google Scholar
33. Falk, K. J. and Steer, R. P., Canadian Journal of Chemistry 66, 575 (1988).Google Scholar