Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T12:34:36.207Z Has data issue: false hasContentIssue false

Adhesive Failure of a Thin Epoxy Film on an Aluminized Substrate

Published online by Cambridge University Press:  17 March 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore CA 94550
D. F. Bahr
Affiliation:
Washington State University, Pullman, WA 99164
M. S. Kent
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. A. Emerson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
E. D. Reedy Jr.
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

In this study we used nanoindentation to determine mechanical properties and combined nanoindentation with stressed overlayers to determine interfacial fracture energy of a 164 nm thick film of Epon 828/T403 on an aluminized glass substrate. The combination of nanoindentation and a tungsten overlayer was required to trigger delamination of the epoxy film from the aluminized substrate. Mechanics-based models for circular blister formation were then used to determine residual stresses and interfacial fracture energies. This approach showed that the tungsten overlayer had a compressive residual stress of 1.9 GPa which drove blister formation at a fracture energy of 1.9 J/m2 with a phase angle of loading equal to –62°.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kent, M. S., Reedy, E. D., and Stevens, M. J., Molecular-to-Continuum Fracture Analysis of Thermosetting Polymer/Solid Interfaces, Sandia Report SAND2000-0026 (2000).Google Scholar
2. , Wei and Hutchinson, J. W., Int'l. Journal of Fracture, 9, 315 (1998).Google Scholar
3. Bagchi, A. and Evans, A. G., Thin Solid Films, 286, 203 (1996).Google Scholar
4. Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A. G., J. Mater. Res., 9, 1734 (1994).Google Scholar
5. Bahr, D. F., Hoehn, J. W., Moody, N. R., and Gerberich, W. W., Acta Mater., 45, 5163 (1997).Google Scholar
6. Kriese, M. D., Gerberich, W. W., and Moody, N. R., J. Mater. Res., 14, 3007 (1999).Google Scholar
7 Kriese, M. D., Moody, N. R., and Gerberich, W. W., Acta mater., 46, 6623 (1998).Google Scholar
8. Zhuk, A. V., Evans, A. G., Hutchinson, J. W., and Whitesides, G. M., J. Mater. Res., 13, 3555 (1998).Google Scholar
9. Lucas, B. N., Oliver, W. C., and Swindeman, J. E., in Fundamentals of Nanoindentation and Nanotribolgy, edited by Moody, N. R., Gerberich, W. W., Burnham, N., and Baker, S. P. (Mater. Res. Soc. Proc., 522, Pittsburgh, PA, 1998) pp. 314.Google Scholar
10. Lucas, B. N., Rosenmayer, C. T., and Oliver, W. C., in Thin Films-Stresses and Mechanical Properties VII, edited by Cammarata, R. C., Nastasi, M., Busso, E. P., and Oliver, W. C. (Mater. Res. Soc. Proc., 505, Pittsburgh, PA, 1998) pp. 97102.Google Scholar
11. Marsh, D. M., Proc. Roy. Soc. A, 279, 420 (1963).Google Scholar
12. Volinsky, A. A., Clift, W. M., Moody, N. R., Gerberich, W. W., in Interfacial Engineering for Optimized Properties II, edited by Carter, C. B., Hall, E. L., Briant, C. L., and Nutt, S. (Mater. Res. Soc. Proc., 586, Pittsburgh, PA, 1999) to be published.Google Scholar
13. Swadener, J. G., Liechti, K. M., and Lozanne, A. L. de, J. Mech. Phys. Solids, 47, 223 (1999).Google Scholar
14. Agrawal, R. K. and Drzal, L. T., J. Adhesion, 54 (1995) p. 79102.Google Scholar
15. Agrawal, R. K. and Drzal, L. T., J. Adhesion Sci. Tech., 9, 1381 (1995).Google Scholar
16. Marshall, D. B. and Evans, A. G., J. Appl. Phys., 56, 2632 (1984).Google Scholar
17. Evans, A. G. and Hutchinson, J. W., Int. J. Solids Struct., 20, 455 (1984).Google Scholar
18. Hutchinson, J. W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J. W. and Wu, T. Y. (Academic Press Inc., 29, New York, 1992) pp. 63191.Google Scholar
19. Evans, A. G., Ruhle, M., Dalgleish, B. J., and Charalambides, P. G., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergammon Press, Oxford, 1990) p. 345.Google Scholar
20. Tvergaard, V. and Hutchinson, J. W., J. Mech. Phys. Solids, 41, 1119 (1993).Google Scholar
21. Volinsky, A. A., Tymiak, N. I., Kriese, M. D., Gerberich, W. W., and Hutchinson, J. W., in Fracture and Ductile versus Brittle Behavior: Theory, Modeling, and Experiment, edited by Beltz, G. E., Selinger, R. L. Blimber, Marder, M. P., and Kim, K. S. (Mater. Res. Soc. Proc., 539, Pittsburgh, PA, 1998) pp. 277290.Google Scholar
22. Hoehn, J., PThesis, h.D., University of Minnesota, 1996.Google Scholar
23. Suo, Z. and Huthinson, J. W., Int. J. Fract., 43, 1 (1990).Google Scholar
24. Volinsky, A. A. and Gerberich, W. W., in Materials Reliability in Microelectronics IX, (Mater. Res. Soc. Proc., 563, Pittsburgh, PA, 1999) pp 275284.Google Scholar
25. Rice, J. R., Drugan, W. J., and Sham, T.-L., in Fracture Mechanics: Twelfth Conference, ASTM STP 700, ASTM (1980) pp.189221.Google Scholar