Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-29T11:25:58.791Z Has data issue: false hasContentIssue false

AlInAs Band Gap Modulations Observed by Tem and Optical Measurements

Published online by Cambridge University Press:  10 February 2011

E. Bearzi
Affiliation:
L.P.M. (URA CNRS 358) INSA de LYON Bât. 502, 69621 Villeurbanne Cedex, France
T. Benyattou
Affiliation:
L.P.M. (URA CNRS 358) INSA de LYON Bât. 502, 69621 Villeurbanne Cedex, France
C. Bru-Chevallier
Affiliation:
L.P.M. (URA CNRS 358) INSA de LYON Bât. 502, 69621 Villeurbanne Cedex, France
G. Guillot
Affiliation:
L.P.M. (URA CNRS 358) INSA de LYON Bât. 502, 69621 Villeurbanne Cedex, France
J. C. Harmand
Affiliation:
CNET Bagneux (France Télécom) 96 ave. Ravera, 92220 Bagneux Cedex, France
O. Marty
Affiliation:
D.P.M. (URA CNRS 172) Université Lyon 1, Bât 503, 69622 Villeurbanne Cedex, France
M. Pitaval
Affiliation:
D.P.M. (URA CNRS 172) Université Lyon 1, Bât 503, 69622 Villeurbanne Cedex, France
Get access

Abstract

At a low MBE growth temperature (400°C), an anisotropic composition modulation has been observed by Transmission Electron Microscopy (TEM) on AIlnAs layers. Optical measurements have been performed on these samples and compared with classical AllnAs grown at 530°C. We show the clustering “organization” on the low temperature layers and we propose some hypothesis to explain the composition modulation effects on the AlInAs optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- Gcorgakilas, A., Halkias, G., Christou, A., Kornilios, K., Papavassiliou, C., Zekentes, K., Konstandinis, G., Peiro, F., Cornet, A., Tabata, A., Guillot, G., J.Electrochem. Soc., 140, 1503, (1993)Google Scholar
2- Gupta, S., Bahattacharya, P.K., Pamulapati, J., Mourou, G., J. Appl. Phys., 69, 3219 (1991)Google Scholar
3- Oh, J.E., Bhattacharya, P.K., Chen, Y.C., Aina, O., Mattingly, M., J. of Elec. Mat., 19, 435 (1989)Google Scholar
4- Olsthoorn, S.M., Driessen, F.A.J.M., Eijkelenboom, A.P.A.M., Giling, L.J., J.Appl.Phys., 73, 7798 (1993)Google Scholar
5- Hase, A., Kunzel, H., Zahn, D.R.T., Richter, W., J. Appl. Phys., 76, 2459 (1994)Google Scholar
6- Brown, A.S., Delaney, M.J., Singh, J., J. Vac. Sci. Technol. B7, 20384 (1989)Google Scholar
7- Singh, J., Bajaj, K.K., J.Appl.Phys., 57, 5433 (1985)Google Scholar
8- Zhou, H.P., Torres, C.M.Sotomayor, J. Appl. Phys., 76, 3572 (1994)Google Scholar
9- Baltagi, Y., Bearzi, E., Bru-Chevallier, C., Benyattou, T., Guillot, G., Harmand, J.C., This conference.Google Scholar
10- Fouquet, J.E., Minsky, M.S., Rosner, S.J., Appl. Phys. Lett., 63, 3212 (1993)Google Scholar
11- Mdder, A.K., Zunger, A., Phys. Rev. B, 51, 10462 (1995)Google Scholar
12- Fergusson, T., Cheng, T.S., Torres, C.M.Sotomayor, Murray, R., J. Vac. Sci. Technol. B12, 1319 (1994)Google Scholar