Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T17:34:12.639Z Has data issue: false hasContentIssue false

Alkali-Metal Containing Amorphous Carbon: Reactivity and Electronic Structure

Published online by Cambridge University Press:  10 February 2011

M. Töwe
Affiliation:
Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
P. Reinke
Affiliation:
Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
P. Oelhafen
Affiliation:
Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Get access

Abstract

Amorphous hydrogen-free carbon films (sp2-dominated a-C) were deposited under ultrahigh vacuum conditions between room temperature and 800°C. These films served as matrices for the in-situ incorporation of alkali-metal atoms (Li, Na). In-situ sample characterization was performed by photoelectron spectroscopy with both x-ray and ultraviolet excitation (XPS, UPS). While the clean metal-containing samples were prepared with metal contents of about 10 at%, a strong oxidation driven accumulation of metal atoms on the film surface exceeding 50 at% was observed upon exposure to molecular oxygen. Work-function measurements by UPS reflected the changes within the electronic structure of the material. Metal incorporation considerably decreased the work-function, but only after oxidation we observed work-functions below the values given for pure alkali metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M.S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).Google Scholar
2. Dahn, J.R., Zheng, T., Liu, Y., and Xue, J.S., Science 270, 590593 (1995).Google Scholar
3. Jackson, G.L., Lazarus, E.A., Navratil, G.A., Bastasz, R., Brooks, N.H., Garnier, D.T., Holtrop, K.L., Phillips, J.C., Marmar, E.S., Taylor, T.S., Thomas, D.M., Wampler, W.R., Whyte, D.G., West, W.P., J. Nucl. Mater. 241–243, 655659 (1997).Google Scholar
4. Janeschitz, G., Janeschitz, G., Borrass, K., Federici, G., Igitkhanov, Y., Kukushkin, A., Pacher, H.D., Pacher, G.W., Sugihara, M., J. Nucl. Mater. 220–222, 7388 (1995).Google Scholar
5. Schelz, S., Richmond, T., Kania, P., Oelhafen, P., and Güntherodt, H.-J., Surf. Sci. 359, 227236 (1996).Google Scholar
6. Töwe, M., Reinke, P., and Oelhafen, P., to be submittedGoogle Scholar
7. Citrin, P.H., Wertheim, G.K., Baer, Y., Phys. Rev. B 16, 42564282 (1977).Google Scholar
8. Nakadaira, M., Saito, R., Kimura, T., Dresselhaus, G., and Dresselhaus, M.S., J. Mater. Res. 12, 13671375 (1997).Google Scholar
9. Lide, D.R. (Ed.), CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton New York, 1997).Google Scholar
10. Wandelt, K., Surf. Sci. Rep. 2, 1121 (1982).Google Scholar
11. Estrade-Szwarckopf, H. and Rousseau, B., J. Phys. Chem. Solids 53, 419436 (1992).Google Scholar
12. Rousseau, B., Vayer-Besanqon, M., and Estrade-Szwarckopf, H., Solid State Comm. 99, 143147 (1996).Google Scholar
13. Hrbek, J., Yang, Y.W., and Rodriguez, J.A., Surf. Sci. 296, 164170 (1993).Google Scholar