Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-17T04:10:52.330Z Has data issue: false hasContentIssue false

Alloy Design of Ordered Intermetallics

Published online by Cambridge University Press:  28 February 2011

E. P. George
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6093
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6093
Get access

Abstract

Ordered intermetallics based on aluminides and silicides constitute a unique class of metallic materials possessing promising high-temperature properties. However, brittle fracture and poor ductility have limited their use as engineering materials in most cases. During the past ten years extensive research has been conducted on ordered intermetallics. As a result, significant progress has been made in identifying various causes of brittle fracture, and their relative importance in different ordered alloys. In some cases this understanding has helped achieve dramatic improvements in ductility. We review here three different classes of brittle fracture in ordered intermetallics and discuss the results in terms of model alloy systems chosen from each class. Ni3A1 and NiAl are discussed as prototypical ordered alloys prone to intrinsic intergranular brittleness. They are used to review our current understanding of intrinsically weak grain boundaries and the mechanisms by which boron is thought to suppress intergranular fracture. Next, FeAl and Fe3A1 are discussed as examples of ordered intermetallics that are susceptible to environmental embrittlement at ambient temperatures. Recent discoveries in these two alloy systems are reviewed with special emphasis on some of the rather interesting but subtle effects of test environment. Finally, A13X type intermetallics (A13 Sc, Al3Ti-base, and Al3 Zr-base alloys) are discussed as examples of ordered alloys that have high symmetry (L12 structure), are relatively soft, yet cleave transgranularly with very little ductility. In all these cases, experimental results are compared with theoretical calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research sponsored by the Division of Materials Sciences, U.S. Dept. of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

References

1. High-Temperature Ordered Intermetallic Alloys (Proc. Mater. Res. Soc. Symp), edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc., Pittsburgh, PA, 1985), Vol. 39.Google Scholar
2. High Temperature Ordered Intermetallic Alloys II (Proc. Mat. Res. Soc. Symp.), edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Materials Research Society, Pittsburgh, PA, 1987), Vol 81.Google Scholar
3. High-Temperature Ordered Intermetallic Alloys III (Proc. Mater. Res. Soc. Symp), edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc., Pittsburgh, PA, 1989), Vol. 133.Google Scholar
4. Liu, C. T., Metall. Trans. 4, 1743 (1973).Google Scholar
5. Liu, C. T., J. Nucl. Mater. 85–86, 907 (1979).Google Scholar
6. Liu, C. T. and Inouye, H., Metall. Trans. 10A, 1515 (1979).Google Scholar
7. Lipsitt, H., Aviation Week, 81, January 26, 1976.Google Scholar
8. Aoki, K. and Izumi, O., Trans. Japan Inst. Met. 19, 203 (1978).Google Scholar
9. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).Google Scholar
10. Liu, C. T. and Koch, C. C., proc. of a public workshop on Trends in Critical Materials Requirements for Steels of the Future: Conservation and Substitution Technology for Chromium, NBSIR-83-2679-2, National Bureau of Standards, Washington, D.C., June 1983.Google Scholar
11. Grala, E. M., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (Wiley, New York, 1960), p. 358.Google Scholar
12. White, C. L. and Stein, D. F., Metall. Trans. 9A, 13 (1978).Google Scholar
13. Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scripta Metall. 19, 551 (1985).Google Scholar
14. Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. 16A, 441 (1985).Google Scholar
15. Takasugi, T. and Izumi, O., Acta Metall. 33, 1247 (1985).Google Scholar
16. Takasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).Google Scholar
17. Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. M., and Jackson, M. R., Scripta Metall. 20, 129 (1986).Google Scholar
18. Taub, A. I. and Briant, C. L., p. 343 in Ref 2.Google Scholar
19. Taub, A. I. and Briant, C. L., Acta Metall. 35, 1597 (1987).Google Scholar
20. King, A. H. and Yoo, M. H., p. 99 in Ref. 2.Google Scholar
21. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J., and Hosson, J. Th. M. De, in Grain Boundary Chemistry and Intergranular Fracture, edited by Was, G. S. (Trans. Tech. Publications, 1989).Google Scholar
22. Kruisman, J. J., Vitek, V., and Hosson, J. Th. M. De, Acta Metall. 36, 2729 (1989).Google Scholar
23. Rozner, A. G. and Wasilewski, R. J., J. Inst. Met. 94, 169 (1966).Google Scholar
24. Hahn, K. H. and Vedula, K., Scripta Metall. 23, 7 (1989).Google Scholar
25. George, E. P. and Liu, C. T., J. Mater. Res. 5, 754 (1990).Google Scholar
26. Miracle, D. B., Russell, S., and Law, C. C., p. 225 in Ref. 3.Google Scholar
27. Darolia, R., Lahrman, D. F., Field, R. D., and Freeman, A. J., p. 113 in Ref. 3.Google Scholar
28. Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. 15A, 399 (1984).Google Scholar
29. Horton, J. A. and Miller, M. K., Acta Metall. 35, 133 (1987).Google Scholar
30. Miller, M. K. and Horton, J. A., J. de Phys. C7, 263 (1986).Google Scholar
31. Horton, J. A. and Miller, M. K., p. 105 in Ref. 2.Google Scholar
32. Sieloff, D. D., Brenner, S. S., and Burke, M. G., p. 87 in Ref. 2.Google Scholar
33. Liu, C. T., Inouye, H., and Schaffhauser, C. A., Metall. Trans. 12A, 993 (1981).Google Scholar
34. White, C. L., Clausing, R. E., and Heatherly, L., Metall. Trans. 10A, 683 (1979).Google Scholar
35. Hwang, S. K. and Morris, J. W. Jr., Metall. Trans. 11A, 1197 (1980).Google Scholar
36. Strum, M. J., Hwang, S. K., and Morris, J. W. Jr., in Interfacial Structure, Properties and Design (Proc. Mater. Res. Soc. Symp), edited by Yoo, M. H., Clark, W. A. T., and Briant, C. L. (Mater. Res. Soc., Pittsburgh, PA, 1989), Vol. 122, p. 467.Google Scholar
37. Rice, J. R., in The Effect of Hydrogen on the Behavior of Metals (AIME, New York, 1976), p. 455.Google Scholar
38. Liu, C. T., White, C. L., Koch, C. C., and Lee, E. H., in Proc. Symp. High-Temperature Materials Chemistry II (Electrochem. Soc., Inc., 1983), p. 32.Google Scholar
39. White, C. L., Padgett, R. A., Liu, C. T., and Yalisove, S. M., Scripta Metall. 18, 1417 (1984).Google Scholar
40. Painter, G. S. and Averill, F. W., Phys. Rev. Lett. 58, 234 (1987).Google Scholar
41. Eberhart, M. E. and Vvedinsky, D. D., Phys. Rev. Lett. 58, 61 (1987).Google Scholar
42. Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., and Hay, P. J., Scripta Metall. 23, 217 (1989).Google Scholar
43. Bond, G. M., Robertson, I. M., and Birnbaum, H. K., J. Mater. Res. 2, 436 (1987).Google Scholar
44. Schulson, E. M., Wiehs, T. P., Viens, D. V., and Baker, I., Acta Metall. 33, 1587 (1985).Google Scholar
45. Khadkikar, P. S., Vedula, K., and Shale, B. S., Metall. Trans. 18A, 425 (1987).Google Scholar
46. Baker, I., Schulson, E. M., and Horton, J. A., Acta Metall. 35, 1533 (1987).Google Scholar
47. Schulson, E. M., Baker, I., and Frost, H. J., p. 195 in Ref. 2.Google Scholar
48. Schulson, E. M., Wiehs, T. P., Baker, I., Frost, H. J., and Horton, J. A., Acta Metall. 34, 1395 (1986).Google Scholar
49. Horton, J. A. and Miller, M. K., p. 105 in Ref. 2.Google Scholar
50. Swiatnicki, W. A. and Grabski, M. W., Acta Metall. 37, 1307 (1989).Google Scholar
51. Mackenzie, R. A. D. and Sass, S. L., Scripta Metall. 22, 1807 (1988).Google Scholar
52. Mills, M. J., Scripta Metall. 23, 2061 (1989).Google Scholar
53. Krzanowski, J. E., Scripta Metall. 23, 1219 (1989).Google Scholar
54. Sieloff, D. D., Brenner, S. S., and Ming-Jian, Hua, p. 155 in ref 3.Google Scholar
55. Baker, I., Schuslon, E. M., and Michael, J. R., Philos. Mag. B57, 379 (1988).Google Scholar
56. George, E. P., Liu, C. T., and Padgett, R. A., Scripta Metall. 23, 979 (1989).Google Scholar
57. Baker, I. and Schulson, E. M., Scripta Metall. 23, 1883 (1989).Google Scholar
58. Horton, J. A. and Liu, C. T., Scripta Metall. 24, 1251 (1990).Google Scholar
59. Hanada, S., Watanabe, S., and Izumi, O., J. Mater. Sci. 21, 203 (1985).Google Scholar
60. George, E. P., Liu, C. T., and Liao, J. J., to be published in these proceedings.Google Scholar
61. Binary Alloy Phase Diagrams, edited by Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986).Google Scholar
62. Schmidt, B., Nagpal, P., and Baker, I., p. 755 in Ref. 3.Google Scholar
63. Smialek, J. L., Doychak, J., and Gaydosh, D. J., Oxidation Behavior of FeAl + Hf, Zr, B, NASA TM-101402, NASA Lewis Research Center, Cleveland, OH, September 1988.Google Scholar
64. McKamey, C. G. et al. , Evaluation of Mechanical and Metallurgical Properties of Fe3Al-Based Aluminides, ORNL TM-10125, Oak Ridge National Laboratory, Oak Ridge, TN, September 1986.Google Scholar
65. DeVan, J. H., in Oxidation of High-Temperature Intermetallics, edited by Grobstein, T. and Doychak, J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1989), p. 107.Google Scholar
66. Tortorelli, P. F., DeVan, J. H., and Distefano, J. R., presented at the “High Temperature Intermetallics Symposium,” WESTEC '89, Los Angeles, CA, March 21-23, 1989.Google Scholar
67. Liu, C. T., Froes, F. H., and Stiegler, J. O., to be published in Metals Handbook: Heat Treating (American Society for Metals, Metals Park, OH, 1990), 10th edition, Vol. 3.Google Scholar
68. Crimp, M. A., Vedula, K. M., and Gaydosh, D. J., p. 499 in Ref. 2.Google Scholar
69. Gaydosh, D. J., Draper, S. L., and Nathal, M. V., Metall. Trans. 20A, 1701 (1989).Google Scholar
70. Crimp, M. A. and Vedula, K. M., Mater. Sci. Engr. 78, 193 (1986).Google Scholar
71. Mendiratta, M. G., Ehlers, S. K., and Chatterji, D. K., in Proc. NBS Symp. Rapid Solidification Processing: Principles and Technologies (National Bureau of Standards, Gaithersburg, MD, 1983), p. 420.Google Scholar
72. 1. Baker and Gaydosh, D. J., Mater. Sci. Engr. 96, 147 (1987).Google Scholar
73. I. Baker and Gaydosh, D. J., p. 315 in Ref. 2.Google Scholar
74. Horton, J. A., Liu, C. T., and Koch, C. C., in High-Temperature Alloys: Theory and Design, edited by Stiegler, J. O. (AIME, Warrendale, PA, 1984), p. 309.Google Scholar
75. McKamey, C. G., Horton, J. A., and Liu, C. T., p. 321 in Ref. 2.Google Scholar
76. Kerr, W. R., Metall. Trans. 17A, 2298 (1986).Google Scholar
77. Liu, C. T., Lee, E. H. and McKamey, C. G., Scripta Metall. 23, 875 (1989).Google Scholar
78. Speidel, M. P., in Hydrogen Damage, edited by Beachem, C. D. (American Society for Metals, Metals Park, OH, 1977), p. 329.Google Scholar
79. Gest, R. J. and Troiano, A. R., Corrosion 30(8), 274 (1974).Google Scholar
80. George, E. P., Lewis, M. B., and Liu, C. T., unpublished research, Oak Ridge National Laboratory (1989).Google Scholar
81. Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).Google Scholar
82. Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. 19A, 353 (1988).Google Scholar
83. Izumi, O. and Takasugi, T., J. Mater. Res. 3, 426 (1988).Google Scholar
84. Kuruvilla, A. K., Ashok, S., and Stoloff, N. S., in Proc. Third Intl. Congress on Hydrogen in Metals (Pergamon, Paris, 1982) Vol. 2, p. 629.Google Scholar
85. Kuruvilla, A. K. and Stoloff, N. S., Scripta Metall. 19, 83 (1985).Google Scholar
86. Hirth, J. P., Metall. Trans 11A, 861 (1980).Google Scholar
87. Fu, C. L. and Painter, G. S., submitted to J. Mater. Res. (1990).Google Scholar
88. Liu, C. T., McKamey, C. G., and Lee, E. H., Scripta Metall. 24, 385 (1990).Google Scholar
89. McKamey, C. G., Horton, J. A., and Liu, C. T., Scripta Metall. 22, 1679 (1988).Google Scholar
90. McKamey, C. G., Horton, J. A., and Liu, C. T., J. Mater. Res. 4, 1156 (1989).Google Scholar
91. McKamey, C. G. et al. , Development of Iron Aluminidesfor Gasification Systems, ORNL TM-10793, Oak Ridge National Laboratory, Oak Ridge, TN, July 1988.Google Scholar
92. Zedalis, M. S., Ghate, M. V., and Fine, M. E., Scripta Metall. 19, 647 (1985).Google Scholar
93. Yamaguchi, M., Umakoshi, Y., and Yamane, T., Philos. Mag. A 55, 301 (1987).Google Scholar
94. Yamaguchi, M., Umakoshi, Y., and Yamane, T., p. 275 in Ref. 2.Google Scholar
95. Umakoshi, Y., Yamaguchi, M., Yamane, T., and Hirano, T., Philos. Mag. A 58, 651 (1988).Google Scholar
96. Kumar, K. S. and Pickens, J. R., Scripta Metall. 22, 1015 (1988).Google Scholar
97. Tarnacki, J. and Kim, Y-W, Scripta Metall. 22, 329 (1988).Google Scholar
98. Huang, S. C., Hall, E. L., and Gigliotti, M.F.X., J. Mater. Res. 3, 1 (1988).Google Scholar
99. Schneibel, J. H., Becher, P. F., and Horton, J. A., J. Mater. Res. 3, 1272 (1988).Google Scholar
100. George, E. P., Porter, W. D., Henson, H. M., Oliver, W. C., and Oliver, B. F., J. Mater. Res. 4, 78 (1989).Google Scholar
101. George, E. P., Porter, W. D. and Joy, D. C., p. 311 in Ref. 3.Google Scholar
102. Porter, W. D., Hisatsune, K., Sparks, C. J., Oliver, W. C., and Dhere, A., p. 657 in Ref. 3.Google Scholar
103. Schneibel, J. H. and Porter, W. D., p. 335 in Ref. 3.Google Scholar
104. Vasudevan, V. K., Wheeler, R., and Fraser, H. L., p. 705 in Ref. 3.Google Scholar
105. Mazdiyasni, S., Miracle, D. B., Dimiduk, D. M., Mendiratta, M. G., and Subramanian, P. R., Scripta Metall. 23, 327 (1989).Google Scholar
106. Powers, W. O., Wert, J. A., and Turner, C. D., Philos. Mag. A. 60, 227 (1989).Google Scholar
107. Turner, C. D., Powers, W. O., and Wert, J. A., Acta Metall., 37, 2635 (1989).Google Scholar
108. Winnicka, M. B. and Varin, R. A., Scripta Metall. 23, 1199 (1989).Google Scholar
109. Tarnacki, J., and Kim, Y. -W., Scripta Metall. 23, 1063 (1989).Google Scholar
110. Zhang, S., Nic, J. P., and Mikkola, D. E., Scripta Metall. 24, 57 (1990).Google Scholar
111. Fu, C. L., J. Mater. Res. 5, 971 (1990).Google Scholar
112. Schneibel, J. H. and George, E. P., Scripta Metall. 24, 1069 (1990).Google Scholar
113. George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5 (1990), in press.Google Scholar
114. Powers, W. O. and Wert, J. A., Philos. Mag., in press.Google Scholar
115. Powers, W. O. and Wert, J. A., Metall. Trans., accepted for publication.Google Scholar
116. Mysko, D. D., Lumsden, J. B., Powers, W. O., and Wert, J. A., Scripta Metall., accepted for publication.Google Scholar
117. Schneibel, J. H., Horton, J. A., and Porter, W. D., submitted to J. Mater. Res. (1990).Google Scholar
118. Raman, A. and Schubert, K., Zeitschrift fur Metallkunde. 56, 99 (1965).Google Scholar
119. Seibold, A., Zeitschrift fur Metallkunde. 72, (1965).Google Scholar
120. Subramanian, P. R., Simmons, J. P., Mendiratta, M. G., and Dimiduk, D. M., p. 51 in Ref. 3.Google Scholar
121. Liu, C. T., unpublished results, Oak Ridge National Laboratory (1988).Google Scholar
122. Heredia, F. E., Tichy, G., Pope, D. P., and Vitek, V., Acta Metall. 37, 2755 (1989).Google Scholar
123. Pope, D. P. and Ezz, S. S., Int. Met. Rev. 29, 136 (1984).Google Scholar
124. Pugh, S. F., Philos. Mag. 45, 823 (1954).Google Scholar
125. Kayser, F. X. and Stassis, C., Phys. Stat. Sol. (a). 64, 335 (1981).Google Scholar