Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T18:45:34.276Z Has data issue: false hasContentIssue false

All-polymer bulk heterojunction solar cells with high fill factors based on blends of poly-3-hexylthiophene: poly(perylene diimide-alt-terthiophene)

Published online by Cambridge University Press:  18 April 2012

Dariusz Kotowski
Affiliation:
Istituto per lo Studio delle Macromolecole - CNR, via Bassini 15, 20133 Milano, Italy
Erika Kozma
Affiliation:
Istituto per lo Studio delle Macromolecole - CNR, via Bassini 15, 20133 Milano, Italy
Marinella Catellani
Affiliation:
Istituto per lo Studio delle Macromolecole - CNR, via Bassini 15, 20133 Milano, Italy
Silvia Luzzati
Affiliation:
Istituto per lo Studio delle Macromolecole - CNR, via Bassini 15, 20133 Milano, Italy
Get access

Abstract

The photovoltaic characteristics of all polymer bulk heterojunction solar cells made of P3HT and a perylene diimide-based copolymer (PEK3) have been studied. Thermal annealing is needed to improve the performances. Annealing optimization induces an enhancement of the power conversion efficiency from 0.06 to 1%, Jsc from 0.24 to 2.9 mA/cm2 and FF from 0.32 to 0.59. The origin of such improvements has been investigated by studying the P3HT:PEK3 blend morphology, by means of absorption and emission spectroscopy and charge transport, from single carrier measurements on P3HT:PEK3 diodes. Upon annealing we have observed an increase in phase segregation and a 100-fold enhancement of the hole and electron mobilities, that favor the dissociation of bound electron-hole pairs and their transport to the electrodes. This explains the high FF of the annealed P3HT:PEK3 solar cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Veenstra, S.C., Loos, J., Kroon, J.M., Prog. Photovolt: Res. Appl. 15, 727 (2007).Google Scholar
2. McNeill, C.R., Abrusci, A., Zaumseil, J., Wilson, R., McKiernan, M.J., Halls, J.J.M., Greenham, N.C., Friend, R.H., Appl. Phys. Lett. 90, 193506 (2007).Google Scholar
3. Tan, Z.A., Zhou, E.J., Zhan, X.W., Wang, X., Li, Y.F., Barlow, S. and Marder, S.R., Appl. Phys. Lett. 93, 073309 (2008).Google Scholar
4. Zhou, E., Cong, J., Wei, Q., Tajima, K., Yang, C., Hashimoto, K., Angew. Chem. Int. Ed. 50, 1 (2011).Google Scholar
5. Lenes, M., Morana, M., Brabec, C.J., Blom, P.W.M., Adv. Funct. Mater. 19, 1106 (2009).Google Scholar
6. Zhan, X.W., Tan, Z.A., Zhou, E.J., Li, Y.F., Misra, R., Grant, A., Domercq, B., Zhang, X-H., An, Z.S., Zhang, X., Barlow, S., Kippelen, B. and Marder, S.R., J. Mater. Chem. 19, 5794 (2009).Google Scholar
7. Kozma, E., Kotowski, D., Bertini, F., Luzzati, S., Catellani, M., Polymer 51, 2264 (2010).Google Scholar
8. Hau, S.K., Yip, H-L., Acton, O., Baek, N.S., Ma, H., Jen, A.K.-Y., J. Mater. Chem. 18, 5113 (2008).Google Scholar
9. Fabiano, S., Chen, Z., Vahedi, S., Facchetti, A., Pignataro, B., Loi, M.A., J. Mater. Chem. 21, 5891 (2011).Google Scholar
10. Sundberg, M., Inganäs, O., Stafström, S., Gustafsson, G., Sjögren, B., Solid State Commun 6, 435 (1989).Google Scholar
11. Murgatroyd, P.N., J.Phys.D: Appl.Phys. 3, 151 (1970).Google Scholar
12. Mihailetchi, V.D., Xie, H., de Boer, B., Koster, L.J.A., Blom, P.W.M., Adv. Funct. Mater. 16, 699 (2006).Google Scholar
13. Mihailetchi, V.D., Koster, L.J.A., Blom, P.W.M., Melzer, C., de Boer, B., van Duren, J.K.J., Janssen, R.A.J., Adv. Funct. Mater. 15, 795 (2005).Google Scholar
14. Falzon, M-F., Wienk, M.M., Janssen, R.A.J., J. Phys. Chem. C, 115, 3178 (2011).Google Scholar
15. Campbell, A.R., Hodgkiss, J.M., Westenhoff, S., Howard, I.A., Marsh, R.A., McNeill, Ch.R., Friend, R.H., Greenham, N.C., Nano Lett. 8, 11 (2008).Google Scholar
16. Mark, P., Helfrich, W., J. Appl. Phys. 33, 205 (1962).Google Scholar