Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-10-02T18:16:47.422Z Has data issue: false hasContentIssue false

Ambient and High Temperature STM Investigations of the Growth of Titanium Suicide on Silicon Substrates

Published online by Cambridge University Press:  21 February 2011

Andrew W. Stephenson
Affiliation:
Cambridge University, Dept. of Engineering, Trumpington Street, Cambridge, U.K., CB2 1PZ
Timothy M.H. Wong
Affiliation:
Cambridge University, Dept. of Engineering, Trumpington Street, Cambridge, U.K., CB2 1PZ
Mark E. Welland
Affiliation:
Cambridge University, Dept. of Engineering, Trumpington Street, Cambridge, U.K., CB2 1PZ
Get access

Abstract

A variable temperature scanning tunnelling microscope (STM) in UHV has been used to investigate the growth, morphology and surface atomic structure of ultrathin titanium suicide films on Si(100) and Si(111) substrates. Three stages of suicide growth have been identified based on microstructural considerations. They occur over similar temperature ranges for both substrates and may be summarised as: agglomeration and the formation of disordered islands, crystallite formation, and crystallite growth. Additionally, island burial is found for Si(100) substrates (950°C), and preferential crystallite growth is observed for high temperature processing (1200°C) of titanium silicide on Si(111).

Methods for STM crystallography have been developed and used to identify possible epitaxial silicide/silicon relationships based on morphological considerations. Atomic resolution images of titanium silicide crystallites have identified a 2×2 silicon termination of a C54-TiSi2(111) surface, a 2×2 silicon terminated C54-TiSi2(010) surface, and a reconstructed C54-TiSi2(311) surface. It has been concluded that unambiguous identification of epitaxial relationships requires images of the atomic structure of the silicide crystallite surfaces in addition to morphological information.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chen, L.J. and Tu, K.N., Materials Science Reports 6, 61 (1991).Google Scholar
2 Nipoti, R. and Armigliato, A., Jap. J. Appl. Phys. 24, 1421 (1985).Google Scholar
3 Chen, L.J., Wu, I.W., Chu, J.J., and Nieh, C.W., J. Appl. Phys. 63, 2778 (1988).Google Scholar
4 Lur, W. and Chen, L.J., J. Appl. Phys. 66, 3604 (1989).Google Scholar
5 Fung, M.S., Cheng, H.C., and Chen, L.J., Appl. Phys. Lett. 47, 1312 (1985).Google Scholar
6 Wu, I.C., Chu, J.J., and Chen, L.J., J. Appl. Phys. 60, 3172 (1986).Google Scholar
7 Chu, J.J., Wu, I.C., and Chen, L.J., J. Appl. Phys. 61, 549 (1987).Google Scholar
8 Catana, A., Schmid, P.E., Heintze, M., Levy, F., Stadelmann, P., and Bonnet, R., J. Appl. Phys. 67, 1820 (1990).Google Scholar
9 Choi, C.K., Park, H.H., Lee, J.Y., Cho, K.I., Paek, M.C., Kwon, O.J., Kim, K.H., and Yang, S.J., J. of Crystal Growth 115, 579 (1991).Google Scholar
10 Kim, K.H., Lee, J.J., Seo, D.J., Choi, C.K., Hong, S.R., Koh, J.D., Kim, S.C., Lee, J.Y., and Nicolet, M.A., J. Appl. Phys. 71, 3812 (1992).Google Scholar
11 Wang, M.H. and Chen, L.J., J. Appl. Phys. 71, 5918 (1992).Google Scholar
12 Berti, M., Drigo, A.V., Cohen, C., Siejka, J., Bentini, G.G., Nipoti, R., and Guerri, S., J. Appl. Phys. 55, 3558 (1984).Google Scholar
13 Merchant, P. and Amano, J., J. Vac. Sci. Tech. B 2, 762 (1984).Google Scholar
14 Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).Google Scholar
15 d'Heurle, F.M., Gas, P., Engström, I., Nygren, S., Östling, M., and Peterson, C.S., IBM Research Report RC 11151 No. 50067 (1985).Google Scholar
16 van Loenen, E.J., Fischer, A.E.M.J., and van der Veen, J.F., Surf. Sci. 155, 65 (1985).Google Scholar
17 Butz, R., Rubloff, G.W., Tan, T.Y., and Ho, P.S., Phys. Rev. B 30, 5421 (1984).Google Scholar
18 Tromp, R.M., Rubloff, G.W., and van Loenen, E.J., J. Vac. Sci. Technol. A 4, 865 (1986).Google Scholar
19 Rubloff, G.W., Tromp, R.M., and van Loenen, E.J., Appl. Phys. Lett. 48, 1600 (1986).Google Scholar
20 Wallart, X., Nys, J.P., and Dalmai, G., Appl. Surf. Sci. 38, 49 (1989).Google Scholar
21 Wallart, X., Nys, J.P., Zeng, H.S., Dalmai, G., Lefebvre, I., and Lannoo, M., Phys. Rev. B 41, 3087 (1990).Google Scholar
22 Stephenson, A.W. and Weiland, M.E., to be submitted to J. Appl. Phys.Google Scholar
23 Stephenson, A.W. and Weiland, M.E., J. Appl. Phys. 77, p. n/a (1995).Google Scholar
24 Jeon, H. and Nemanich, R.J., Thin Solid Films 184, 357 (1990).Google Scholar