Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-22T16:19:40.643Z Has data issue: false hasContentIssue false

Amorphous-to-Microcrystalline Silicon Transition in Hot-Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

P. Brogueira
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex, Portugal
V. Chu
Affiliation:
INESC, Rua Alves Redol 9, 1000 Lisboa, Portugal
J. P. Conde
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex, Portugal
Get access

Abstract

The conductivity and the structural properties of thin films deposited by Hot-Wire Chemical Vapor Deposition (HW-CVD) from silane and hydrogen at a substrate temperature of 220 °C are shown to be strongly dependent on the filament temperature, Tfil, and process pressure, p. Amorphous silicon films are obtained at low pressures, p < 3 × 10−2Torr, for Tfil ∼ 1900 °C and FH2 = FSiH4. At this TfilJU, high deposition rates are observed, both with and without hydrogen dilution, and no silicon was deposited on the filaments. At Tfil ∼ 1500 °C, a transition from a-Si:H for p > 0.3 Torr to microcrystalline silicon (μc-Si:H) for p < 0.1 Torr occurs. In this temperature regime, silicon growth on the filaments is observed. /ic-Si:H growth both without hydrogen dilution and also in very thin films (∼ 0.05 μm) is achieved. Raman and X-Ray spectra give typical grain sizes of 10 – 20 nm, with a crystalline fraction higher than 50%. For both, Tju ∼ 1500 °C, p > 0.3 Torr and Tfil ∼ 1900 °C and p ∼ 2.7 × 10−2Torr, an increase of the crystalline fraction from 0 to ∼ 30% is observed when the hydrogen dilution, FH2/FSiH4, increases from 1 to > 4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Konuma, M., Curtins, H., Sarott, F. A. and Vepřek, S., Philos. Mag. B, 55 (3), 377 (1987).Google Scholar
2. Komuro, S., Aoyagi, Y., Segawa, Y., Namba, S. Masuyamam, A., Matsuda, A. and Tanaka, K., J. Appl Phys., 56, 1658 (1984).Google Scholar
3. He, Y., Yin, C., Cheng, G., Wang, L., Liu, X. and Hu, G. Y., J. Appl Phys., 75, 797 (1994).Google Scholar
4. Dušane, R. O., Dušane, S. R., Bhide, V. G. and Kshirsagas, S. T., Appl. Phys. Lett. 63 (16), 2201 (1993).Google Scholar
5. Matsumura, H., Jpn. Appl Phys. 30, L1522 (1991).Google Scholar
6. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M. C., Andreu, J. and Lloret, A., Appl Phys. A 59, 645 (1994).Google Scholar
7. Lannin, J. S.; Raman Scattering fo Amorphous Si,Ge and their alloys (chapter 6) in Semiconductors and Semimetals 21, Part B, Academic Press, Inc. (1984).Google Scholar
8. Kaneko, T., Wakagi, M., Onisawa, K. and Minemura, T., Appl Phys. Lett. 64 (14), 1865 (1994).Google Scholar
9. Vepřek, S., Sarott, F. A. and Iqbal, Z., Phys. Rtv. B 36 (6), 3344 (1987).Google Scholar
10. Findeisen, E., Feidenhans'l, R., Vigild, M. E., Clausen, K. N., Hansen, J. B., Bentzon, M. D. and Goff, J. P., J. Appl Phys. 76 (8), 4636 (1994).Google Scholar
11. Borges, F. S.; Elementos de cristalografia, EdiçÕes Gulbenkian (1982).Google Scholar
12. Vanacek, M., Kocka, J., Strichlik, J., Kosicek, Z., Stika, O. and Triska, A., Sol. Energy Mater. 8, 411 (1983).Google Scholar
13. Wyrsch, N., Finger, F., Mcmahon, T. J., Vanacek, M., J. Non-Cryst. Solids, 137 & 138, 347 (1991).Google Scholar
14. Wang, N. and Wagner, S., private communication.Google Scholar
15. Fang, C. J., Gruntz, K. J., Ley, L., Cardona, M., Demond, F. J., Müller, G. and Kalbitzer, S., J. Non-Cryst. Solids 35 & 36, 255 (1980).Google Scholar