Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-16T19:39:09.319Z Has data issue: false hasContentIssue false

An Ion-Scattering Study of Oxygen Indiffusion During Pulsed Laser Annealing/Cleaning of Silicon

Published online by Cambridge University Press:  15 February 2011

J.F.M. Westendorp
Affiliation:
Fom-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam The Netherlands.
Z.L. Wang
Affiliation:
Fom-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam The Netherlands.
F.W. Saris
Affiliation:
Fom-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam The Netherlands.
Get access

Abstract

Oxygen indiffusion during pulsed laser annealing of silicon has been studied using the 186 O(α,α) 186 O resonance at 3.045 MeV. Anneals were carried out with a Q–switched ruby laser, energy density of the pulses 1.5 J/cm2 , pulse width 20 ns. No evidence for oxygen indiffusion was found, neither for ion–implanted single pulse air–annealed silicon nor for a silicon wafer, cleaned with 8 laser shots in a UHV environment. In the latter case, the upper limit of the oxygen concentration was found to be 3.1 * 1018 at/cm3 , which is lower than the solid solubility limit of oxygen in silicon. The non–occurrence of indiffusion is consistent with the dissolution time of SiO2 in Si, which is orders of magnitude longer than the melt duration of the Si–substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Foti, G., Rimini, E., Tseng, W.S., Mayer, J.W.; Applied Physics 15, 365 (1978).Google Scholar
2. Young, R.T., White, C.W., Clark, G.J., Narayan, J., Christie, W.H., Murakami, M., King, P.W., Kramer, S.D.; Applied Phys.Lett. 32, 139 (1978).CrossRefGoogle Scholar
3. Mooney, P.M., Young, R.T., Karins, J., Lee, Y.H., Corbett, J.W.; Phys.Status Solidi A48, K31 (1978).Google Scholar
4. Kimmerling, L.C., Benton, J.L., in: “Laser and Electron Beam Processing of Materials”, White, C.W. and Peercy, P.S., eds. (Academic Press, New York, 1980), p. 385.Google Scholar
5. Skolnick, M.S., Cullis, A.G., Webber, H.C.; Applied Phys.Lett. 38, 474 (1981).Google Scholar
6. Kishino, S., Kanamori, M., Yoshihiro, N., Tajima, M., Iizaka, T.; J.Appl.Phys. 50, 8240 (1979).Google Scholar
7. Swanson, M.L., Howe, L.M., Saris, F.W., Quenneville, A.F.; Proceedings Conf.on Defects in Semiconductors, Boston (1980), eds. Narayan, J. and Tan, T–Y. (North–Holland Publ.).Google Scholar
8. White, C.W., Wilson, S.R., Appleton, B.R.; J.Appl.Phys. 51, 738 (1980).Google Scholar
9. Hoonhout, D.; Thesis, Chapter II.Google Scholar
10. Zehner, D.M., White, C.W., Ownby, G.W.; Appl.Phys.Lett. 36(1), 56 (1980).Google Scholar
11. Sigmon, T.W., Chu, W.K., Lugujjo, E., Mayers, J.W.; Appl.Phys.Lett. 24, 3, 105 (1974).CrossRefGoogle Scholar
12. Cameron, J.; Phys.Rev. 90, 839 (1953).CrossRefGoogle Scholar
13. Mezey, G., Gualai, J., Nagy, T., Kotai, E., Manuaba, A.; in: Ion Beam Surface Layer Analysis, vol.1, 1976, Plenum Press, eds. Meyer, , Linker, O., Käppeler, G.F. Google Scholar
14. Wang, Z.L., Westendorp, H., Saris, F.W., to be published.Google Scholar
15. Kock, A.J.R. de; in: Handbook on Semiconductors, series editor T.S., Moss, volume 3: Materials, Properties and Preparation, chapter IV, 247333.Google Scholar
16. Chaney, R.E., Varker, C.; J.Crystal Growth 33, 188 (1976) andGoogle Scholar
J.Electr.Society 123, 846 (1976).Google Scholar
17. Hirata, H., Hoshikawa, K.; Jap.Journal of Appl.Phys. 19, 1573 (1980).CrossRefGoogle Scholar
18. Hoh, K., Koyama, H., Uda, K., Miura, Y.; Jap.Journal of Appl.Phys., vol.19, no. 7, July 1980, pp. L375L378.Google Scholar
19. Garulli, A., Servidori, M., Vecchi, I.; J.Phys.D: Applied Physics 13 (1980) L199L202.Google Scholar