Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T12:22:53.988Z Has data issue: false hasContentIssue false

Analyses of the Grain Boundary Misorientation and Oxygen Content of Bulk Processed YBa2Cu3O7-δ

Published online by Cambridge University Press:  10 February 2011

Jenn-Yue Wang
Affiliation:
Materials Science Division, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973 Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
Alexander H. King
Affiliation:
Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
Yimei Zhu
Affiliation:
Materials Science Division, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
Yuan-Liang Wang
Affiliation:
Materials Science Division, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
Mas Aki Suenaga
Affiliation:
Materials Science Division, Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
Get access

Abstract

The grain boundary misorientation distribution of 203 grain boundaries in bulk processed high Tc superconductor YBa2Cu3O7-δ with five processing conditions, was studied. Two complementary analytical approaches, Grain Boundary Misorientation Distribution (GBMD) from the random description, using a hypothesis test and X2 analysis, and Grain Boundary Character Distribution (GBCD), using the Coincidence Site Lattice (CSL) model, were applied. The GBMD and GBCD both showed grain boundary evolution departing from a random distribution above 935°C processing temperature. The GBCD analyses indicated an approximately linear increase in the population of CSL-related boundaries, among which the tetragonal CSL (c/a ≠ 3) boundaries grew in the same trend while orthorombic boundaries (c/a = 3) became stagnated. The results from comparing the corresponding GBCD and volume averaged Jc for each batch indicated that the tetragonal CSL boundaries were oxygen deficient and accounted for, among other current limiting factors, lower current carrying ability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Opiysko, M. M., and Scheuermann, M., Phys. Rev. Lett., 60, 1653(1988).Google Scholar
2. Dimos, D., Chaudhari, P., Mannhart, J., and legoues, F. L., Phys. Rev. Lett., 61, 1653(1988).Google Scholar
3. Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B, 41, 4038(1990).Google Scholar
4. Hwang, D. M., Ravi, T. S., Ramesh, R., Chan, S.-W., Chen, C. Y., Nazar, L., Wu, X. D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990).Google Scholar
5. Eom, C. B., Marshall, A. F., Suzuki, Y., Boyer, B., Peaser, R. F. W., and Geballe, T. H., T. H., , Nature, 353, 544(1991).Google Scholar
6. Eom, C. B., Marshall, A. F., Suzuki, Y., Boyer, B., Pease, R. F. W., Geballe, T. H., van Dover, R. B., and Phillips, J. M., Phys. Rev. B. Google Scholar
7. Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature, 347, 167(1990).Google Scholar
8. Larbalestier, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H., and Kwok, W. K., Phys. Rev. B, 41, 1863(1990).Google Scholar
9. Bollmann, W., Crystal Defects and Crystalline Interfaces, Berlin, Springer, 1970.Google Scholar
10. Sutton, A. P., and Vitek, V., Phil. Trans. R. Soc. A, 309, 1, 37, 55(1983).Google Scholar
11. Chen, F.-R., and King, A. H., Acta Crystall. B, 43, 416(1987), Phil. Mag. A, 57, 431(1988).Google Scholar
12. Singh, A., Chandrasekhar, N. and King, A. H., Acta Cryst‥ B46, 117(1990).Google Scholar
13. Wang, J.-Y., Zhu, Y., and King, A. H., Proc. 51st Annual Meeting of MSA, ed. Bailey, G. W. and Rieder, C. L., 94291993).Google Scholar
14. Zhu, Y., Zhang, H., Wang, H., and Suenaga, M., J. Mater. Res., 12, 2507(1991).Google Scholar
15. Zhu, Y., Wang, Z. L., and Suenaga, M., Phil. Mag. A, 67, 11(1993).Google Scholar
16. Zhu, Y., Zuo, J. M., Moodenbaugh, A. R. and Suenaga, M., Phil. Mag. A, 70, 859(1994).Google Scholar
17. Wang, Y.-L., Tan, Z. Q., Zhu, Y., Moodenbaugh, A. R. and Suenaga, M., J. Mater. Res., 7, 3175(1992).Google Scholar
18. Zhang, H. and King, A. H., unpublished.Google Scholar
19. Young, C. T. and Lytton, J. L., J. Appl Phys., 43, 1408(1972).Google Scholar
20. Ball, C. J., Phil. Mag., 41, 1307(1981).Google Scholar
21. Chen, F.-R. and King, A. H., J. Electron Micro. Tech., 6, 55(1987).Google Scholar
22. Grimmer, H., Scripta Met, 13, 161(1979).Google Scholar
23. Chan, S.-W. and Boyko, V. S., Phys. Rev. B, 53, 16579(1996).Google Scholar
24. King, A. H. and Singh, A., J. Appl. Phys., 74(7), 4627(1993).Google Scholar
25. Zhu, Y., Phil. Mag. A., 69, 717(1994).Google Scholar