Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-16T20:10:28.793Z Has data issue: false hasContentIssue false

Anisotropy Energies and Critical Behavior of Ultrathin Ni(111) Films Grown on Smooth and Rough W(110) (invited)

Published online by Cambridge University Press:  26 February 2011

Yi Li
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 1000 Berlin 33, Federal Republic of Germany
K. Baberschke
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 1000 Berlin 33, Federal Republic of Germany
Get access

Abstract

6 to 80 Å thin Ni(111) films were prepared on smooth and rough W(110) substrates in UHV and characterized by LEED and Auger spectroscopies. The measurements of the magnetic properties were carried out in situ by ferromagnetic resonance at 9 GHz between 300 and 600 K. We found that the effective anisotropies, which consist of surface, crystal, and stress induced anisotropy, increase with decreasing film thickness and temperature. The roughness of the substrate results in the drastic decrease of the effective anisotropy. This is attributed to the change of the surface structure and the stress within the Ni films. Furthermore we found that the Curie temperature Tc and the critical exponent β of Ni films on the smooth and rough substrates show no change.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heinrich, B., Urquhart, K.B., Arrott, A.S., Cochran, J.F., Myrtle, K. and Purcell, S.T., Phys. Rev. Lett. 59 (1987) 1756 Google Scholar
2. Krebs, J.J., Rachford, F.J., Lubitz, P., and Prinz, G.A., J. Appl. Phys. 53 (1982) 8058, G.A. Prinz. G.T. Rado, and J.J. Krebs, 53 (1982) 2087Google Scholar
3. Berghaus, A., Farle, M., Li, Yi, and Baberschke, K., in: Magnetic Properties of Low-Dimensional Systems II, eds. Falicov, L.M., Mejia-Lira, F., and Moran-Lopez, Y.L., Springer Proc. in Physics 50 (Springer, Berlin, 1990)Google Scholar
4. Bruno, P., J. Phys. F18 (1988) 1291 Google Scholar
5. Chappert, C., Beauvillain, K. Le Dang P., Renard, H. Hurdequint D. Phys. Rev. B34 (1986) 3192 Google Scholar
6. Liu, C. and Bader, S.D., ref. [3]Google Scholar
7. Ballentine, C.A., Fink, R.L., Araya-Pochet, Y. and Erskine, Y.L., Appl. Phys. A49 (1989) 459 CrossRefGoogle Scholar
9. Martens, J.W.D., Peeters, W.L., Nederpel, P.Q.J. and Erman, M., J. Appl. Phys. 55 (1984) 1100 Google Scholar
10. Elmers, H.J. and Gradmann, U., Appl. Phys. A51 (1990) 255 Google Scholar
11. Farle, M. and Baberschke, K., Phys. Rev. Lett. 58. (1987) 511 CrossRefGoogle Scholar
12. Li, Yi, Farle, M., and Baberschke, K., Phys. Rev. B41 (1990) 9596 Google Scholar
13. Vonsovskii, S.V., ed., Ferromagnetic Resonance (Pergamon Press, Oxford, 1966)Google Scholar
14. Taglauer, E., Appl. Phys. A51 (1990) 238 and E. Bauer, private communicationGoogle Scholar
15for other results see: Li, Yi, Farle, M., and Baberschke, K. J. Mag. Mag. Mat. (1991) in pressGoogle Scholar
16. Bergholz, R. and Gradmann, U., J. Magn. Magn. Mat. 45 (1984) 389 CrossRefGoogle Scholar
17. Wijn, H.P.J.. ed. Landolt-Börnstein, New Series, vol.19.sub a (Springer-Verlag)Google Scholar
18. Bruno, P. and Renard, J.-P., Appl. Phys. A49 (1989) 499 Google Scholar