Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T19:05:44.024Z Has data issue: false hasContentIssue false

Anisotropy in Atomic-Scale Interface Structure and Mobility in Inas/Ga1_Xinxsb Superlattices

Published online by Cambridge University Press:  03 September 2012

A. Y. Lew
Affiliation:
ECE Department, University of California at San Diego, La Jolla, CA 92093-0407
S. L. Zuo
Affiliation:
ECE Department, University of California at San Diego, La Jolla, CA 92093-0407
E. T. Yu
Affiliation:
ECE Department, University of California at San Diego, La Jolla, CA 92093-0407
R. H. Miles
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Get access

Abstract

We have used cross-sectional scanning tunneling microscopy to study the atomic-scale interface structure of InAs/Ga, _In.xSb superlattices grown by molecular-beam epitaxy. Detailed, quantitative analysis of interface profiles obtained from constant-current images of both (110) and (1ī0) cross-sectional planes of the superlattice indicates that interfaces in the (1ī0) plane exhibit a higher degree of interface roughness than those in the (110) plane, and that the Ga1-xln xAs interfaces are rougher than the InAs-on-Gal1-xInxSb interfaces. The roughness data are consistent with anisotropy in interface structure arising from anisotropic island formation during growth, and in addition with a growth-sequence-dependent interface asymmetry resulting from differences in interfacial bond structure between the superlattice layers. Roughness data are compared with measurements of anisotropy in low-temperature Hall mobilities of the samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smith, D. L. and Mailhiot, C., J. Appl. Phys. 62, 2545 (1987).Google Scholar
2 Chow, D. H., Miles, R. H., Söderström, J R., and McGill, T. C., Appl. Phys. Lett. 56, 1418 (1990).Google Scholar
3 Hasenberg, T.C., Chow, D. H., Kost, A. R., Miles, R. H., and West, L., Elect. Lett. 31, 275 (1995).Google Scholar
4 Johnson, J. L., Samoska, L.A., Gossard, A. C., Merz, J. L., Jack, M. D., Chapman, G. R., Baumgratz, B. A., Kosai, K., and Johnson, S. M., J. Appl. Phys. 80, 1116 (1996).Google Scholar
5 Chow, D. H., Miles, R. H., and Hunter, A. T., J. Vac. Sci. Technol. B 10, 888 (1992).Google Scholar
6 Miles, R. H., Schulman, J. N., Chow, D. H., and McGill, T. C., Semicond. Sci. Technol. 8, S102 (1993).Google Scholar
7 Miles, R. H., Chow, D. H., and Hamilton, W. J., J. Appl. Phys. 71, 211 (1992).Google Scholar
8 Feenstra, R. M., Collins, D. A., Ting, D. Z.-Y., Wang, M. W., and McGill, T. C., J. Vac. Sci. Technol. B 12, 2592 (1994).Google Scholar
9 Feenstra, R. M., Collins, D. A., Ting, D. Z.-Y., Wang, M. W., and McGill, T. C., Phys. Rev. Lett. 72,2749 (1994).Google Scholar
10 Thibado, P. M., Bennett, B. R., Twigg, M. E., Shanabrook, B. V., and Whitman, L. J., Appl. Phys. Lett. 67, 3578 (1995).Google Scholar
11 Lew, A. Y., Yu, E. T., Chow, D. H., and Miles, R. H., Appl. Phys. Lett. 65, 201 (1994).Google Scholar
12 Goodnick, S. M., Ferry, D. K., Wilmsen, C. W., Liliental, Z., Fathy, D., and Krivanek, O. L., Phys. Rev. B 32, 8171 (1985).Google Scholar
13 Pukite, P. R., Petrich, G. S., Batra, S., and Cohen, P. I., J. Cryst. Growth 95, 269 (1989).Google Scholar
14 Heller, E. J. and Lagally, M. G., Appl. Phys. Lett. 60, 2675 (1992).Google Scholar
15 Bressler-Hill, V., Maboudian, R., Wassermeier, M., Wang, X.-S., Pond, K., Petroff, P. M., and Weinberg, W. H., Surf. Sci. 287/288, 514 (1993).Google Scholar
16 Hoffman, C. A., Meyer, J. R., Youngdale, E. R., Bartoli, F. J., and Miles, R. H., Appl. Phys. Lett. 63,2210 (1993).Google Scholar
17 Tokura, Y., Saku, T., Tarucha, S., and Horikoshi, Y., Phys. Rev. B 46, 15558 (1992).Google Scholar