Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-15T22:36:20.506Z Has data issue: false hasContentIssue false

Annealing of Quenched Fe-Al Alloys With/Without B And Ti

Published online by Cambridge University Press:  10 February 2011

Y. Yang
Affiliation:
Thayer School of Engineering, Dartmouth College, NH03755
I. Baker
Affiliation:
Thayer School of Engineering, Dartmouth College, NH03755
Get access

Abstract

Fe-40A1, Fe-40A1–0.12B and Fe-40A1–5Ti were annealed at a variety of temperatures, water quenched to obtain different vacancy concentrations, and heated at 10 K/min to 973K in a differential scanning calorimeter. Either one or two exothermic peaks were observed, at 533–613K and 743–933K, for all the alloys, while an additional exothermic peak was observed at 653K-693K for Fe-40A1–5Ti. All the peaks shifted to lower temperature with increasing quenching temperature. It is shown that the highest temperature exothermic peak is associated with the annihilation of thermal vacancies. Analysis of this peak as a function of temperature yields vacancy formation enthalpies of 102±15kJ/mol, 104±15 kJ/mol and 81±15 kJ/mol for Fe-40A1, Fe-40A1–0.12B and Fe-40A1–5Ti, respectively. The lower temperature exothermic peaks may arise from vacancy rearrangement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baker, I. and Munroe, P.R., Inter. Mater. Rev., 42, 181(1997).CrossRefGoogle Scholar
2. Chang, Y.A., Pike, L.M., Liu, C.T., Bilbrey, A.R., and Stone, D.S., Intermetallics, 1,107(1993).CrossRefGoogle Scholar
3. Kogachi, M. and Haraguchi, T., Mater. Sci. Eng., A230, 124(1997).CrossRefGoogle Scholar
4. Yang, Y. and Baker, I., Intermetallics, 6, 167(1998).CrossRefGoogle Scholar
5. Xiao, H. and Baker, I., Acta Metall. Mater., 43, 391(1995).Google Scholar
6. George, E.P. and Baker, I., Phil. Mag., 77, 737(1998).CrossRefGoogle Scholar
7. Riviere, J.P. and Grilhe, J., Scripta Metall., 9, 967(1975).CrossRefGoogle Scholar
8. Würschum, R., Grupp, C. and Schaefer, H.E., Phy. Rev. Letters, 75, 97(1995).CrossRefGoogle Scholar
9. Riviere, J.P. and Grilhe, J., Acta Metall., 20, 1275(1972).CrossRefGoogle Scholar
10. Brown, A.M. and Ashby, M.E, Acta Metall., 28, 1085(1980).CrossRefGoogle Scholar
11. Neumann, J.P., Chang, Y.A., and Lee, C.M., Acta Metallurgica, 24, 593(1976).CrossRefGoogle Scholar
12. Neumann, J.P., Acta Metallurgica, 28, 1165(1980).CrossRefGoogle Scholar
13. Collins, G.S. and Peng, L.S., I1 Nuovo Cimento, 18d, 329(1996).CrossRefGoogle Scholar
14. Vogl, G. and Sepiol, B., Acta metall. mater., 42, 3175(1994).Google Scholar
15. Kogachi, M., Haraguchi, T., and Kim, S.M., Intermetallics, 6, 499(1998).CrossRefGoogle Scholar
16. Wolff, J., Franz, M., Broska, A., Koehler, B., and hehenkamp, T., Mater. Sci. Eng., A239–240, 213(1997).CrossRefGoogle Scholar
17. Morris, M.A. and Morris, D.G., Scripta Materialia, 38, 509(1998).CrossRefGoogle Scholar
18. Paris, D. and Lesbats, P., J. Nucl. Mater., 69–70, 628(1978).CrossRefGoogle Scholar
19. Yang, Y. and Baker, I., to be submitted.Google Scholar
20. Krachler, R., Ipser, H., Sepiol, B., and Vogl, G., Intermetallics, 3, 83(1995).CrossRefGoogle Scholar
21. Anderson, I.M., Acta Mater., 45, 3897(1997).CrossRefGoogle Scholar
22. Fu, C.L. and Zou, J., Acta mater., 44, 1471(1996).CrossRefGoogle Scholar
23. Baker, I., Li, X., Xiao, H., Carleton, R., and George, E.P., Intermetallics, 6, 177(1998),CrossRefGoogle Scholar
24. Gay, A.S., Frackiewicz, A., and Biscondi, M., de Physique IV, J., C 2(6), 153(1996).Google Scholar