Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-16T16:00:41.499Z Has data issue: false hasContentIssue false

Apatite- and Monazite-Bearing Glass-Crystal Composites for the Immobilization of Low-Level Nuclear and Hazardous Wastes

Published online by Cambridge University Press:  15 February 2011

D. J. Wronkiewicz
Affiliation:
Argonne National Laboratory, CMT, 9700 South Cass Ave., Argonne, IL 60439, wronkiewicz@cmt.anl.gov
S. F. Wolf
Affiliation:
Argonne National Laboratory, CMT, 9700 South Cass Ave., Argonne, IL 60439, wronkiewicz@cmt.anl.gov
T. S. DiSanto
Affiliation:
Argonne National Laboratory, CMT, 9700 South Cass Ave., Argonne, IL 60439, wronkiewicz@cmt.anl.gov
Get access

Abstract

This study demonstrates that glass-crystal composite waste forms can be produced from waste streams containing high proportions of phosphorus, transition metals, and/or halides. The crystalline phases produced in crucible-scale melts include apatite, monazite, spinels, and a Zr-Si-Fe-Ti phase. These phases readily incorporated radionuclide and toxic metals into their crystal structures, while corrosion tests have demonstrated that glass-crystal composites can be up to 300-fold more durable than simulated high-level nuclear waste glasses, such as SRL 202U.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wronkiewicz, D. J., Feng, X., Brown, N. R., and DiSanto, T., in Emerging Technologies in Hazardous Waste Management VI, edited by Tedder, D. W. (The Am. Chem. Soc., Atlanta, GA, 1984) pp. 645648.Google Scholar
2. Wronkiewicz, D. J., Wolf, S. F., Buck, E. C., DiSanto, T., Surchik, M. T., Fortner, J. A., Dietz, N. L., Richardson, J. W., Luo, J. S., Feng, X., Gong, M., and Brown, N. L, Glass-Crystal Composites for Minimum Additive Waste Stabilization: Interim Progress Report, March 1994-February 1995, Argonne National Laboratory Report (in review).Google Scholar
3. Selberg, N. R., Chambers, A. G., O'Connor, W. K., Anderson, G. L., and Eddy, T. L., in Proc. Inter. Symp. Environ. Tech., Plasma Systems and Applications, Vol.1, Oct. 8-11, Atlanta, GA, p. 227(1995).Google Scholar
4. Ebert, W. L., Bates, J. K., and Borcier, W. L., Waste Mgmt. 11, 205 (1991).Google Scholar
5. Wronkiewicz, D. J., Bradley, C. R., Bates, J. K., and Wang, L. M., in Scientific Basis for Nuclear Waste Management XVII, edited by Barkatt, A. and Van Konynenburg, R. A. (Mat. Res. Soc. Symp. Proc. 333, Pittsburgh, PA, 1994) pp. 259267.Google Scholar
6. Hidaka, H., Takahashi, K., and Holliger, P., Radiochim. Acta 66167, 463 (1994).Google Scholar
7. Wronkiewicz, D. J., Bradley, C. R., and Bates, J. K., Geological Society of America, Abstracts with Program, p. A-185 (1993).Google Scholar
8. Ebert, W. L., The Effects of the Glass Surface Area/Solution Volume Ratio on Glass Corrosion: A Critical Review, Argonne National Laboratory Report ANL-94/34, Argonne IL (1995).Google Scholar
9. Jantzen, C. M., Bibler, N. E., Beam, D. C., Crawford, C. L., and Pickett, M. A., Characterizationo f the Defense Waste ProcessingF acility (DWPF)Environmental Assessment (EA) Glass Standard Reference Material, Westinghouse Savannah River Company Report WSRC-TR-92-346 (1993).Google Scholar
10. White, T. J., Eaton, G. F., Kyle, J., and Lincoln, F., in Extraction and Processingf or the Treatment and Minimization of Wastes, edited by Hager, J., Hansen, B., Imrie, W., Pusatori, J., and Ramachandran, V. (The Min., Metals, and Mat. Soc., Warrendale, PA, 1993) pp. 217227.Google Scholar
11. Kaneko, M., Shoji, Y., Matsuura, H., and Yanasaki, N., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R. C. (Mat. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995) pp. 791798.Google Scholar