Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-13T21:30:25.937Z Has data issue: false hasContentIssue false

Applications Of Tin Thin Films in Silicon Device Technology

Published online by Cambridge University Press:  15 February 2011

M. Wittmer
Affiliation:
Swiss Federal Institute of Technology, 8049 Zurich (Switzerland)
H. Melchior
Affiliation:
Swiss Federal Institute of Technology, 8049 Zurich (Switzerland)
Get access

Abstract

TiN thin films have interesting applications in silicon device technology. We show that TiN is a very efficient barrier for silicon diffusion in metallizations to silicon and discuss implications for high-temperature-resistant and reliable contacts to silicon power devices. The barrier height of TiN on n-type silicon was found to be 0.49 V, allowing the fabrication of low barrier Schottky diodes on high resistivity material and good ohmic contacts to low resistivity n- and p-type material. Finally, we present results on the oxidation kinetics of TiN and the preparation of metaloxide- semiconductor capacitors and field effect transistors with TiN as the gate material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Suri, A.K., Nimmagadda, R. and Bunshah, R. F., Thin Solid Films, 64 (1979) 191.Google Scholar
1a Jamal, T., Nimmagadda, R. and Bunshah, R. F., Thin Solid Films, 73 (1980) 245.Google Scholar
2 Wittmer, M., Studer, B. and Melchior, H., J. Appl. Phys., 52 (1981) 5722.CrossRefGoogle Scholar
3 Wittmer, M., Appl. Phys. Lett., 36 (1980) 456.Google Scholar
4 Chu, W.-K., Mayer, J. W. and Nicolet, M.-A., Backscattering Spectrometry, Academic Press, New York, 1978.Google Scholar
5 Poate, J. M., Tu, K. N. and Mayer, J. W., Thin Films- Interdiffusion and Reactions, Electrochemical Society, Princeton, NJ, 1978.Google Scholar
6 Wittmer, M., J. Appl. Phys., 53 (1982) 1007.Google Scholar
7 Wittmer, M., Appl. Phys. Lett., 37 (1980) 540.CrossRefGoogle Scholar
8 Howard, J. K., White, J. F. and Ho, P. S., J. Appl. Phys., 49 (1978) 4083.Google Scholar
9 Howard, J. K., Smith, P. J. and Turene, F. E., IBM Tech. Discl. Bull., 20 (1978) 3477.Google Scholar
10 Sze, S. M., Physics of Semiconductor Devices, Wiley-Interscience, New York, 1969.Google Scholar
11 Wittmer, M., Noser, H. R. and Melchior, H., J. Appl. Phys., 52 (1981) 6659.CrossRefGoogle Scholar
12 Murarka, S. P., J. Vac. Sci. Technol., 17(1980) 775.Google Scholar
13 Grove, A. S., Physics and Technology of Semiconductor Devices, Wiley, New York, 1967.Google Scholar
14 Wittmer, M., Noser, H. R. and Melchior, H., to be published.Google Scholar
15 Shinha, A. K., Lindenberger, W. S., Fraser, D. B., Murarka, S. P. and Fuls, E. N., IEEE Trans. Electron Devices, 27 (1980) 1425.Google Scholar
16 Eastman, D. E., Phys. Rev. B, 2 (1970) 1.Google Scholar
17 Cheung, N. W., von Seefeld, H., Nicolet, M.-A., Ho, F. and Iles, P., J. Appl. Phys., 52 (1981) 4297.Google Scholar