Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-09T07:32:09.305Z Has data issue: false hasContentIssue false

Argon Ion Bombardment During Molecular Beam Epitaxy of Ge (001)

Published online by Cambridge University Press:  25 February 2011

Eric Chason
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
K. M. Horn
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
J. Y. Tsao
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
S. T. Picraux
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
Get access

Abstract

Using in situ, real-time reflection high energy electron diffraction (RHEED), we have measured the evolution of Ge (001) surface morphology during simultaneous molecular beam epitaxy and Ar ion beam bombardment. Surprisingly, low-energy Ar ions during growth tend to smoothen the surface. Bombardment by the ion beam without growth roughens the surface, but the surface can be reversibly smoothened by restoring the growth beam. We have measured the effect of such “ion beam growth smoothening” above and below the critical temperature for intrinsic growth roughening. At all measured growth temperatures the surface initially smoothens, but below the critical roughening temperature the final surface morphology is rough whereas above this temperature the final morphology is smooth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greene, J.E., Rockett, A. and Sundgren, J.-E., in Photon, Beam and Plasma Stimulated Chemical Processes at Surfaces, edited by Donnelly, V.M., Herman, I.P. and Hirose, M. (Mater. Res. Soc. Proc. 75, Pittsburgh, PA 1987) pp. 3953.Google Scholar
2. Ogale, S.B., Madukhar, A. and Thomsen, M., Appl. Phys. Lett. 51 11 (1987).10.1063/1.98829Google Scholar
3. Burger, W.R. and Reif, R., J. Appl. Phys. 62,4255 (1987).10.1063/1.339099CrossRefGoogle Scholar
4. Ohmi, T., Ichikawa, T., Shibata, T., Matsudo, K. and Iwabachi, H., Appl. Phys. Lett. 53 1 (1988).Google Scholar
5. Appleton, B.R., Pennycook, S.J., Zuhr, R.A., Herbots, N. and Noggle, T.S., Nucl. Instr. and Meth. B19/20 975 (1987).10.1016/S0168-583X(87)80195-7Google Scholar
6. Zalm, P.C. and Beckers, L.J., Appl. Phys. Lett. 41 167 (1982).10.1063/1.93441CrossRefGoogle Scholar
7. Biersack, J.P. and Haggmark, L.G., Nucl. Instr. and Meth. 174–257 (1980).Google Scholar
8. Chason, E., Horn, K.M., Tsao, J. Y. and Picraux, S.T., manuscript in preparation.Google Scholar
9. van Hove, J.M., Pukite, P.R. and Cohen, P.I., J. Vac. Sci. Tech. B3 563 (1985).10.1116/1.583180CrossRefGoogle Scholar
10. Cohen, P.I., Pukite, P.R., van Hove, J.M. and Lent, C.S., J. Vac. Sci. Tech A4 1251 (1986)10.1116/1.573410Google Scholar
11. Chason, E., Tsao, J.Y., Horn, K.M. and Picraux, S.T., J. Vac. Sci. Tech. B, submitted.Google Scholar