Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T08:38:01.683Z Has data issue: false hasContentIssue false

Assemblies of Polymerized Phospholipid Vesicle Structures Chemisorbed on Au Films Visualized in situ by Environmental Scanning Electron Microscopy

Published online by Cambridge University Press:  17 March 2011

Ivan Stanish
Affiliation:
Center for Bio/Molecular Science and Engineering Naval Research Laboratory 4555 Overlook Ave. Washington D.C. 20375
Richard I. Ray
Affiliation:
Center for Bio/Molecular Science and Engineering Naval Research Laboratory 4555 Overlook Ave. Washington D.C. 20375
Alok Singh
Affiliation:
Center for Bio/Molecular Science and Engineering Naval Research Laboratory 4555 Overlook Ave. Washington D.C. 20375
Get access

Abstract

Submicron vesicles immobilized on gold films were visualized in situ using environmental scanning electron microscopy (ESEM). Electron micrographs show that surface immobilized vesicles composed of diacetylenic phospholipids with 1 mole percent disulfide functionality and that encapsulate NaCl are structurally stable for at least three days. Furthermore, energy dispersive spectroscopy (EDS) provides compositional evidence supporting the formation of surface immobilized vesicles. Using ESEM coupled with EDS, a two-layer vesicle structure was imaged and found to contain NaCl and lipid elements sulfur and phosphorous.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stanish, I., Santos, J.P., Singh, A., J. Am. Chem. Soc. 123, 1008 (2001).Google Scholar
2. Keller, C.A., Kasemo, B., Biophys. J. 75, 1397 (1998).Google Scholar
3. Jung, L.S., Schumaker-Perry, J.S., Campbell, C.T., Yee, S.S., Gelb, M.H., J. Am. Chem. Soc. 122, 4177 (2000).Google Scholar
4. Iwasaki, Y., Tanaka, S., Hara, M., Ishihara, K., Nakabayashi, N., J. Colloid Interface Sci. 192, 432 (1997).Google Scholar
5. Reviakine, I., Brisson, A., Langmuir 16, 1806 (2000).Google Scholar
6. Egawa, H., Furusawa, K., Langmuir 15, 1660 (1999).Google Scholar
7. Kardassi, D., Tsiourvas, D., J. Colloid Interface Sci. 186, 203 (1997).Google Scholar
8. Thomson, N.H., Collin, I., Davies, M.C., Palin, K., Parkins, D., Roberts, C.J., Tendler, S.J.B., Williams, P.M., Langmuir 16, 4813 (2000).Google Scholar
9. Kumar, S., Hoh, J.H., Langmuir 16, 9936 (2000).Google Scholar
10. Shibata-Seki, T., Masai, J., Tagawa, T., Sorin, T., Kondo, S., Thin Solid Films 273, 297 (1996).Google Scholar
11. Fowler, K., Bottomley, L.A., Schreier, H, J. Controlled Release 22, 283 (1992).Google Scholar
12. Ha, T.H., Kim, K., Langmuir 17, 1999 (2001).Google Scholar
13. Wen, X, Frances, E.I., Langmuir 17, 3194 (2001).Google Scholar
14. Ohlsson, P.A., Tjarnhage, T., Herbai, E., Lofas, S., Puu, G., Bioelectrochem. Bioenerg. 18, 137 (1995).Google Scholar
15. Rothwarf, D.M., Scheraga, H.A, Proc. Natl. Acad. Sci. USA 89, 7944 (1992).Google Scholar