Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T20:21:45.912Z Has data issue: false hasContentIssue false

The Assessment of the Long-Term Evolution of the Spent Nuclear Fuel Matrix by Kinetic, Thermodynamic and Spectroscopic Studies of Uranium Minerals.

Published online by Cambridge University Press:  15 February 2011

Jordi Bruno
Affiliation:
Intera (Spain), Pare Tecnològic del Vallés E-08290 Cerdanyola, Spain
I. Casas
Affiliation:
Intera (Spain), Pare Tecnològic del Vallés E-08290 Cerdanyola, Spain
E Cera
Affiliation:
Intera (Spain), Pare Tecnològic del Vallés E-08290 Cerdanyola, Spain
R. C. Ewing
Affiliation:
Dept. of Earth and Planetary Sciences, University of New Mexico, USA
R. J. Finch
Affiliation:
Dept. of Earth and Planetary Sciences, University of New Mexico, USA
L. O. Werme
Affiliation:
SKB, Box 5864, Stockholm, Sweden.
Get access

Abstract

The long term behaviour of spent nuclear fuel is discussed in the light of recent thermodynamic and kinetic data on mineralogical analogues related to the key phases in the oxidative alteration of uraninite. The implications for the safety assessment of a repository of the established oxidative alteration sequence of the spent fuel matrix are illustrated with Pagoda calculations. The application to the kinetic and thermodynamic data to source term calculations indicates that the appearance and duration of the U(VI) oxyhydroxide transient is critical for the stability of the fuel matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pagoda, Desk-top Performance Assessment. Intera Information Technologies. Environmental Division. February 1994.Google Scholar
2. Shoesmith, D.W. and Sunder, S., J.Nucl.Mater. 190, 20 (1992)Google Scholar
3. Casas, I., Gimenez, J., Marti, V., Torrero, M.E. and de Pablo, J., Radiochim. Acta (1994) in press.Google Scholar
4. Sandino, A. and Bruno, J. (1992), The solubility of (UO2)3(PO4)2-4H2O(s) and the formation of U(VI) phosphate complexes: Their influence in uranium speciation in natural waters. Geochim. Cosmochim. Acta, 56, pp. 41354145.Google Scholar
5. Wronkievitz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. and Tani, B.S., J. Nucl. Mater. 190, 107 (1992)Google Scholar
6. Frondel, C., Amer. Miner. 41, 539 (1956).Google Scholar
7. Finch, R.J. and Ewing, R.C. J. Nucl. Mater. 190, 133 (1992)Google Scholar
8. Gray, W.J., Leiderand, H.R. Steward, S.A., J. Nucl. Mater. 190, 46 (1992)Google Scholar
9. Forsyth, R., Eklund, U.B., Mattson, O. and Schire, D.. SKB Technical Report TR. 90–04, Stockholm (1990)Google Scholar
10. Wronkiewicz, D.J., Bates, J.K.. Presentation at the XV Spent Fuel Workshop, Montebello, Canada, 2224 August 1994.Google Scholar
11. Janeczek, J. and Ewing, R.C. J. Nucl. Mater. 190, 157 (1992)Google Scholar
12. Casas, I., Bruno, J., Cera, E., Finch, R.J. and Ewing, R.C.. Kinetic and thermodynamic studies of uranium minerals. Assessment of the long-term evolution of spent nuclear fuel. SKB Technical Report TR 94–xx. Stockholm 1994.Google Scholar
13. Gray, W.J., Steward, S.A., Tait, J.C. and Shoesmith, D.W., in High Level Radioactive Waste Management Proceedings of the Fifth International Conference. (American Nuclear Society 1994) pp. 25972601.Google Scholar
14. Lasaga, A., Soler, J.M, Ganor, J., Burch, T. and Nagy, K. Geochim. Cosmochim. Acta 58. (1994) pp 23612386.Google Scholar
15. Bruno, J., Casas, I. and Puigdomenech, I.. Geochim. Cosmochim. Acta 55, 647 (1991).Google Scholar
16. Grenthe, I., Fuger, J., Lemire, R., Muller, A.B., Nguyen-Trung, C. and Wanner, H., Chemical Thermodynamics of Uranium. NEA-OCDE, France (1990).Google Scholar
17. Lōfvendahl, R.. Secondary uranium minerals in Sweden. Sveriges Geologiska Undersökning Series C, 779, Upsala (1981)Google Scholar
18. Finch, R.J., Suksi, J., Rosilainen, K. and Ewing, R.C.. The long-term stability of becquerelite. This volume.Google Scholar
19. Parkhurst, D.L., Thorstenson, D.C. and Plummer, L.N. (1980), PHREEQE - a computer program for geochemical calculations. USGS Water Resour. Invest. Rep., pp 8096.Google Scholar
20. Bruno, J. and Puigdomenech, I., Validation of the SKBU1 uranium thermodynamic data base for its use in geochemical calculations with EQ3/6. MRS 127 pp. 887896.Google Scholar