Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-08T09:23:23.091Z Has data issue: false hasContentIssue false

Atomic Interactions and the Stability of Surface Clusters

Published online by Cambridge University Press:  10 February 2011

Seong Jin Koh
Affiliation:
Materials Research Laboratory and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 104 S. Goodwin Ave., Urbana, IL 61801
Gert Ehrlich
Affiliation:
Materials Research Laboratory and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 104 S. Goodwin Ave., Urbana, IL 61801
Get access

Abstract

Interactions dictating the shape and stability of surface islands have been examined for a simple model system, palladium clusters on the W(110) plane. Observations in a field ion microscope of the distribution of two Pd adatoms over the surface yield quantitative values for pair interactions. These are found to be complex, extending over distances longer than 10 A and to vary strongly with the orientation of the pair axis on the (110) surface. Using the measured pair energies it has been possible to infer the magnitude of many-atom effects necessary to account for the equilibrium shape of the clusters. Many-atom interactions turn out to make by far the largest contribution to cluster cohesion; modeling of growth phenomena in terms of nearest-neighbor bonds only is clearly problematic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Halicioglu, T. and White, P. J., J. Vac. Sci. Technol. 17, 1213 (1980).Google Scholar
2 Rosenfeld, G., Lipkin, N. N., Wulfhekel, W., Kliewer, J., Morgenstern, K., Poelsema, B. and Comsa, G., Appl. Phys. A 61, 455 (1995).Google Scholar
3 Poelsema, B., Kunkel, R., Nagal, N., Becker, A. F., Rosenfeld, G., Verheij, L. K. and Comsa, G., Appl. Phys. A 53, 369 (1991).Google Scholar
4 Boisvert, G. and Lewis, L. J., Phys. Rev. B 57, 1881 (1998).Google Scholar
5 Stumpf, R. and Scheffler, M., Phys. Rev. B 53, 4958 (1996).Google Scholar
6 Feibelman, P. J., Phys. Rev. B 52, 16845 (1995).Google Scholar
7 Nelson, R. C., Einstein, T. L., Khare, S. V. and Reus, P. J., Surf. Sci. 295, 462 (1993).Google Scholar
8 Khare, S. V. and Einstein, T. L., Surf. Sci. 314, L857 (1994).Google Scholar
9 Stoltze, P., J. Condens. Matter 6, 9495 (1994).Google Scholar
10 Papadia, S., Desjonquères, M. C. and Spanjaard, D., Phys. Rev. B 53, 4083 (1996).Google Scholar
11 Kolaczkiewicz, j. and Bauer, E., Surf. Sci. 374, 95 (1997).Google Scholar
12 Stuckless, J. T., Starr, D. E., Bald, D. J. and Campbell, C. T., J. Chem. Phys. 107, 5547 (1997).Google Scholar
13 Ehrlich, G. and Watanabe, F., Langmuir 7, 2555 (1991).Google Scholar
14 Watanabe, F. and Ehrlich, G., J. Chem. Phys. 96, 3191 (1992).Google Scholar
15 Fink, H.-W. and Ehrlich, G., Phys. Rev. Lett. 52, 1532 (1984).Google Scholar
16 Bassett, D. W., Thin Solid Films 48, 237 (1978).Google Scholar
17 Watanabe, F. and Ehrlich, G., Phys. Rev. Lett. 62, 1146 (1989).Google Scholar
18 Watanabe, F. and Ehrlich, G., J. Chem. Phys. 95, 6075 (1991).Google Scholar
19 Einstein, T. L., in Physical Structure, Handbook of Surface Science, Vol. 1, edited by Unertl, W. N. (Elsevier North-Holland, Amsterdam, 1996), Chap. 11.Google Scholar
20 Einstein, T. L., Surf. Sci. 84, L497 (1979).Google Scholar