Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-23T07:29:38.756Z Has data issue: false hasContentIssue false

Atomic-Resolution Z-Contrast Imaging and its Application to Compositional Ordering and Segregation

Published online by Cambridge University Press:  10 February 2011

S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6030 Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235, USA
Y. Yan
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
A. Norman
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
Y. Zhang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
M. F. Chisholm
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6030
G. Duscher
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6030 Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235, USA
S. T. Pantelides
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6030 Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235, USA
Get access

Abstract

In the last ten years, the scanning transmission electron microscope (STEM) has become capable of forming electron probes of atomic dimensions making possible a new approach to high-resolution electron microscopy, Z-contrast imaging. Formed by mapping the intensity of high-angle scattered electrons as the probe is scanned across the specimen, the Z-contrast image represents a direct map of the specimen scattering power at atomic resolution. It is an incoherent image, and can be directly interpreted in terms of atomic columns. High angle scattering comes predominantly from the atomic nuclei, so the scattering cross section depends on atomic number (Z) squared. Z-contrast microscopy can therefore be used to study compositional ordering and segregation at the atomic scale. Here we present three examples of ordering: first, ferroelectric materials, second, III-V semiconductor alloys, and finally, cooperative segregation at a semiconductor grain boundary, where a combination of Z-contrast imaging with first principles theory provides a complete atomic-scale view of the sites and configurations of the segregant atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rayleigh, Lord, Phil. Mag. (5) 42, 167 (1896).Google Scholar
2Pennycook, S. J., in: Impact of Electron and Scanning Probe Microscopy on Materials Research, edited by Rickerby, D. G., Valdré, U. and Valdré, G. (Kluwer Academic Publisers, The Netherlands, 1999), p. 161. S. J. Pennycook and D. E. Jesson, Phys. Rev. Lett. 64, 938 (1990). S. J. Pennycook and D. E. Jesson, Ultramicroscopy 37 14 (1991). S. J. Pennycook and D. E. Jesson, Acta. Metall. Mater. 40, S149 (1992). R. F. Loane, P. Xu and J. Silcox, Ultramicroscopy 40 121 (1992).Google Scholar
3Jesson, D. E. and Pennycook, S. J., Proc. Roy. Soc. A 441, 261 (1993). D. E. Jesson and S. J. Pennycook, Proc. Roy. Soc. A 449 (1995) 273.Google Scholar
4Nellist, P. D. and Pennycook, S. J., Ultramicroscopy 78 111 (1999).Google Scholar
5Gull, S. F. and Skilling, J., Maximum entropy methods in image processing, lEE Proc. 131F, 646 (1984).Google Scholar
6Puetter, R.C., International Journal of Imaging Systems and Technology 6, 314 (1995).Google Scholar
7Nellist, P. D. and Pennycook, S. J., Phys. Rev. Lett. 81, 4156 (1998).Google Scholar
8Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Omn~s, F., Beaumont, B., Faurie, J.-P., and Gibart, P., Appl. Phys. Lett. 72, 2680 (1998).Google Scholar
9McGibbon, A. J., Pennycook, S. J., and Angelo, J. E., Science 269, 519 (1995).Google Scholar
10Chisholm, M. F., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 81, 132 (1998). Y. Yan, M. F. Chisholm, G. Duscher, A. Maiti, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 81, 3675 (1998).Google Scholar
11Browning, N. D., Chisholm, M. F., and Pennycook, S. J., Nature 366, 143 (1993). G. Duscher, N. D. Browning, and S. J. Pennycook, Phys. Stat. Sol. (a) 166, 327 (1998). B. Rafferty and S. J. Pennycook, Ultramicroscopy, 78, 141 (1999).Google Scholar
12Morita, E., Ikeda, M., Kumagai, O. and Kaneko, K., Appl. Phys. Lett. 53, 373 (1991). C. S. Baxter and W. M. Stobbs, Phil. Mag. A, 69, 615 (1994).Google Scholar
13Zhang, Y. and Mascarenhas, A., Phys. Rev. B 55, 13100 (1997).Google Scholar
14Chen, J., Chan, H.M. and Harmer, M.P., J. Am. Ceram. Soc. 72, 593 (1989).Google Scholar
15Randall, C. and Bhalla, A., Jpn. J. Appl. Phys., Part 1 29, 327 (1990).Google Scholar
16Maiti, A., Chisholm, M. F., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 77, 1306 (1996).Google Scholar
17Morris, J. R., Lu, Z.-Y, Ring, D. M., Xiang, J. B., Ho, K. M., Wang, C. Z. and Fu, C. L., Phys. Rev. B 77, 11241 (1998).Google Scholar
18Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. and Urban, K, Nature 392, 768 (1998).Google Scholar
19Krivanek, O. L., Delby, N. and Lupini, A., Ultramicroscopy, 78,1 (1999).Google Scholar