Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T14:22:52.518Z Has data issue: false hasContentIssue false

Atomistic Simulation of Displacement Cascades in Zircon

Published online by Cambridge University Press:  21 March 2011

R. Devanathan
Affiliation:
Dept. of Metallurgical Engineering, IIT Madras, Chennai 600036, India
William J. Weber
Affiliation:
Pacific Northwest National Laboratory, MS K8-93, P.O. Box 999, Richland, WA 99352, USA
L. Rene Corrales
Affiliation:
Pacific Northwest National Laboratory, MS K8-93, P.O. Box 999, Richland, WA 99352, USA
Get access

Abstract

Low-energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics (MD) simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements are found to occur mainly in the O sublattice, and O replacements by a ring mechanism are predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects are found to occur. This Si-O-Si bridging is considerable in ZrSiO4 quenched from the melt in MD simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ewing, R.C., Lutze, W., and Weber, W.J., J. Mater. Res. 10, 243 (1995).Google Scholar
2. Ewing, R.C., Lutze, W., and Weber, W.J., in Disposal of Weapons Plutonium, edited by Merz, E.R. and Walters, C. E. (Kluwer Academic, The Netherlands, 1996) pp. 6583.Google Scholar
3. Abdelouas, A., Crovisier, J.L., Lutze, W., Grambow, B., Dran, J.C., Muller, R., J. Nucl. Mater. 240, 100 (1997).Google Scholar
4. anderson, E.B., Burakov, B.E., and Pazhukin, E.M., Radiochimica Acta 60, 149 (1993).Google Scholar
5. Murakimi, T., Chakaumakas, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, W.J., Amer. Mineralogist 76, 1510 (1991).Google Scholar
6. Weber, W.J., Ewing, R.C., and Wang, L.M., J. Mater. Res. 9, 688 (1994).Google Scholar
7. Park, B., Weber, W.J., and Corrales, L.R., Phys. Rev. B 64, 174108 (2001).Google Scholar
8. Crocombette, J.P. and Ghaleb, D., J. Nucl. Mater. 295, 167 (2001).Google Scholar
9. Trachenko, K.O., Dove, M.T., and E.Salje, K.H., J. Phys.: Condens. Matter 13, 1947 (2001).Google Scholar
10. Ziegler, J.F., Biersack, J.P., and Littmark, U., Stopping Power and Ranges of Ions in Matter, (Pergamon, New York, 1985).Google Scholar
11. Dick, B.G. and Overhauser, A.W., Phys. Rev. 112, 90 (1958).Google Scholar
12. Ewald, P.P., Ann. Phys. 64, 253 (1921).Google Scholar
13. Smith, W. and Forester, T.R., J. Mol. Graphics 14, 136 (1996).Google Scholar
14. Devanathan, R., Weber, W.J. and Rubia, T. Diaz de la, Nucl. Instrum. and Meth. B 141, 98 (1998).Google Scholar
15. Ghaly, M., Averback, R.S., Rubia, T. Diaz de la, Nucl. Instr. and Meth. B 102, 51 (1995).Google Scholar