Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T10:30:45.705Z Has data issue: false hasContentIssue false

The Avian Eggshell as a Model of Biomineralization

Published online by Cambridge University Press:  15 February 2011

Jose L. Arias
Affiliation:
Visiting Scientists from University of Chile, Santiago
Maria S. Fernandez
Affiliation:
Visiting Scientists from University of Chile, Santiago
Vincent J. Laraia
Affiliation:
Skeletal Research Center, Departments of Biology and Material Sciences and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Jaroslaw Janicki
Affiliation:
Skeletal Research Center, Departments of Biology and Material Sciences and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Arthur H. Heuer
Affiliation:
Skeletal Research Center, Departments of Biology and Material Sciences and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Arnold I. Caplan
Affiliation:
Skeletal Research Center, Departments of Biology and Material Sciences and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

The avian eggshell is one of the most rapidly mineralizing biological systems known. By understandi'ng the key components and steps in this process, we hope to provide relevant information for fabrication of ceramic composites. The calcification of the eggshell occurs in three main steps: 1) fabrication of an organic matrix, 2) nucleation of an inorganic phase on the organic matrix, and 3) space-filling growth of the calcite phase. The different layers of an eggshell can be separately isolated and studied. Three approaches have been used in our study of the eggshell: 1) characterization of the organization and chemical composition of the shell, 2) selective removal or blocking of particular components to improve the remineralization of demineralized shells, and 3) addition of new components to produce composite ceramics of different kinds. In this preliminary communication, the organization of the shell matrix and membranes and their association with the crystal phase, the immunohistochemical occurrence and distribution of types I and X collagen, and of different proteoglycans are reviewed. Also the preliminary findings of the remineralization of the intact or modified eggshell are presented. These experiments allow us to identify the essential steps in forming a natural composite ceramic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Simkiss., K. Biol. Rev. 36:321367 (1961).Google Scholar
2. Creger, C.R., Phillips, H., and Scott, J.J.. Poultry Sci. 55:17171723 (1976).Google Scholar
3. Stemberger, B.H., Mueller, W.J., and Leach, R.M. Jr. Poultry Sci. 56:537543 (1977).Google Scholar
4. Baumgartner, S., Brown, D.J., Salevsky, E., and Leach, R.M. Jr. J. Nutr. 108:804811 (1978).CrossRefGoogle Scholar
5. Perrot, H.R., Scott, V.D., and Board, R.G.. Calcif. Tiss. Int. 33:19124 (1981).Google Scholar
6. Britton, W.N.. Poultry Sci. 56:647653 (1977).Google Scholar
7. Britton, W.N. and Hale, K.K. Jr. Poultry Sci. 56:865871 (1977)Google Scholar
8. Blake, J.P., Kling, L.J., and Halteman, W.A.. Poultry Sci. 64:176182 (1985).Google Scholar
9. Arias, J.L., Fernandez, M.S., Dennis, J.E., and Caplan, A.I.. Conn. Tiss. Res. 25 (1991) (in press).Google Scholar
10. Arias, J.L., Fernandez, M.S., Dennis, J.E., and Caplan, A.I.. Matrix 1990 (submitted)Google Scholar
11. Wong, M., Hendrix, M.J.C., and von der Mark, K.. Develop. Biol. 104:2836 (1984).CrossRefGoogle Scholar
12. Gibson, G.J. and Flint, M.H.. J. Cell. Biol. 101:277284 (1985).CrossRefGoogle Scholar
13. Castagnola, P., Torella, G., and Cancedda, R.. Develop. Biol. 123:332337 (1987).CrossRefGoogle Scholar
14. Habuchi, H., Conrad, H.E., and Glaser, J.H.. J. Biol. Chem. 260:1302913034 (1985).Google Scholar
15. Poole, A.R. and Pidoux, I.. J. Cell. Biol. 109:25472554 (1989).Google Scholar
16. Poole, A.R., Matsui, Y., Hinek, A., and Lee, E.R.. Anat Rec. 224:167179 (1989).Google Scholar
17. Arias, J.L., Nakamura, O., Fernandez, M.S., Larala, V.J., and Caplan, A.I.. Role of type X collagen in the experimental mineralization of eggshell membranes induced by chick osteogenic cells (in preparation).Google Scholar
18. Arias, J.L., Carrino, D.E., Fernandez, M.S., and Caplan, A.I.. Biochemical and immunohistochemical characterization ofavian eggshell proteoglycans (in preparation).Google Scholar
19. Salevsky, E. Jr and Leach, R.M. Jr. Poultry Sci. 59:438443 (1980).Google Scholar
20. Balch, D.A. and Cooke, R.A.. Ann. Biol. Anim. Bioch. Biophys. 10:1325 (1970).CrossRefGoogle Scholar
21. Picard, J., Paul-Gardais, A., and Vedel, M.. Biochim. Biophys. Acta 320:427441 (1973).Google Scholar
22. Paul-Gardais, A., Picard, J., and Hermelin, B.. Biochim. Biophys. Acta 354:1116 (1974).Google Scholar
23. Simkiss, K. and Tyler, C. Q. Jl. microsc. Sci. 98:1928 (1957).Google Scholar
24. Robinson, D.S. and King, N.R.. Jl. R. microsc. Soc. 88:1322 (1968).Google Scholar
25. Cooke, A.S. and Balch, D.A.. Br. Poultry Sci. 11:345352 (1970).CrossRefGoogle Scholar
26. Robinson, D.S. and King., N.R. Nature 199:497498 (1963).CrossRefGoogle Scholar
27. Silyn-Roberts, H. and Sharp., R.M. Proc. R. Soc. Lond. B227:303324 (1986)Google Scholar
28. Sharp, R.M. and Silyn-Roberts, H.. Biophys. J. 4:175180 (1984).Google Scholar
29. Heaney, R.K. and Robinson, D.S.. Biochim. Biophys. Acta 451:133142 (1976).Google Scholar
30. Krampitz, G. and Engels, J.. Biomineralisation 8:2131 (1975).Google Scholar
31. Krampitz, G., Engels, J., Hamm, M., Kriesten, K., and Cazaux, C.. Biomineralisation 9:5972 (1977).Google Scholar
32. Abatangelo, G., Daga-Gordini, D., Castellani, I., and Cortivo, R.. Calcif. Tiss. Res. 26:247252 (1978).Google Scholar
33. Krampitz, G., Meisel, H., and Witt-Krause, W.. Naturwiss. 67:3839 (1980).Google Scholar
34. Cortivo, R., Castellani, I., Martelli, M., Michelotto, G., and Abatangelo, G.. J. Chromat. 237:127135 (1982).CrossRefGoogle Scholar
35. Bachra, B.M. and Fisher, H.R.A.. Calcif. Tiss. Res. 2:343352 (1968).Google Scholar
36. Wadkins, C.L.. Calcif. Tiss. Res. 2:214228 (1968).Google Scholar
37. Glimcher, M.J.. Anat. Rec. 224:139153 (1989).Google Scholar
38. Weinstein, H., Sachs, C.R., and Schubert, M.. Science 142:10731075 (1963).Google Scholar
39. DiSalvo, J. and Schubert., M. J. Biol. Chem. 242:705710 (1967).CrossRefGoogle Scholar
40. Cuervo, L.A., Pita, J.C., and Howell, D.S.. Calcif. Tiss. Int. 13:110 (1973).Google Scholar
41. Blumenthal, N., Posner, A.S., Silverman, L., and Rosenberg, L.C.. Calc. Tiss. Int. 27:7582 (1979).Google Scholar
42. Chen, C.C. and Boskey, A.L.. Calcif. Tiss. Int. 37:395400 (1985).Google Scholar
43. Boskey, A.L.. J. Phys. Chem. 93:16281633 (1989).Google Scholar
44. Howell, D., Pita, J., Marquez, J., and Gattes., R. J. Clin. Invest. 48:630641 (1969).CrossRefGoogle Scholar
45. Arias, J.L., Laraia, V.J., Fernandez, M.S., Heuer, A.H., and Caplan, A.I.. Structural organization of the shell matrix in the avian eggshell (in preparation).Google Scholar
46. Wheeler, A.P., George, J.W. and Evans, C.A.. Science 212:13971398(1981).Google Scholar
47. Addadi, L. and Weiner, S.. Proc. Natl. Acad. Sci. 82:41104114 (1985).Google Scholar