Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T16:55:40.978Z Has data issue: false hasContentIssue false

The band alignment problem at the Si-high-k dielectric interface

Published online by Cambridge University Press:  01 February 2011

A.A. Demkov
Affiliation:
Motorola, Inc. Austin, Texas, USA
L.R.C. Fonseca
Affiliation:
Motorola, Inc. Tempe, Arizona, USA
J. Tomfohr
Affiliation:
Arizona State University, Tempe, Arizona, USA
O.F. Sankey
Affiliation:
Arizona State University, Tempe, Arizona, USA
Get access

Abstract

We investigate the use of the complex band structure of high-k gate dielectrics to estimate their charge neutrality levels, and compute band offsets to Si. Results of these model calculations are then compared to those obtained with direct electronic structure methods and available experiment. It appears that charge neutrality levels thus obtained indeed provide a consistent picture. However, the uncertainty in the conduction band position inherent in the local density approximation may render the theory inadequate for the engineering support. Despite this limitation, linear re-scaling of the charge neutrality levels based on the experimental band gaps has shown excellent agreement with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. 1999 International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose (1999).Google Scholar
2. Heine, V., Phys. Rev. 138, A1689 (1965).Google Scholar
3. Mönch, W., Surf. Sci. 300, 928 (1994).Google Scholar
4. Van de Walle, C.G. and Martin, R.M., Phys. Rev. B 39, 1871 (1989).Google Scholar
5. Robertson, J. and Chen, C.W., Appl. Phys. Lett. 74, 1168 (1999);Google Scholar
Robertson, J., J. Vac. Sci. Technol. B 18, 1785 (2000).Google Scholar
6. Tejedor, C. and Flores, F., and Louis, E., J. Phys. C 10, 2163 (1977).Google Scholar
7. Tersoff, J., Phys. Rev. B 30, 4874 (1984).Google Scholar
8. Schottky, W., Zeits. f. Physik 118, 539 (1942).Google Scholar
9. Bardeen, J., Phys. Rev. 71, 717 (1947).Google Scholar
10. Tamm, Ig., Physik. Zeits. Sowjetunion 1, 733 (1932).Google Scholar
11. Shockley, W., Phys. Rev. 56, 317 (1939).Google Scholar
12. Mönch, W., Surf. Sci. 300, 928 (1994).Google Scholar
13. Kohn, W., Phys. Rev. 115, 809 (1959);Google Scholar
Kohn, W. and Majumdar, C., Phys. Rev. 138, A1617 (1965);Google Scholar
Kohn, W. and Onffroy, J.R., Phys. Rev. B 8, 2485 (1973);Google Scholar
Rehr, J.J. and Kohn, W., Phys. Rev. B 9, 1981 (1974);Google Scholar
Rehr, J.J. and Kohn, W., Phys. Rev. B 10, 448 (1974);Google Scholar
14. Appelbaum, J.A. and Hamann, D.R., Phys. Rev. B 10, 4973 (1974).Google Scholar
15. Boykin, T., Phys. Rev. B 56, 8107 (1996).Google Scholar
16. Sanches-Portal, D., Ordejon, P., Artachio, E., and Soler, J.M., Int. J. Quantum. Chem. 65, 453 (1999).Google Scholar
17. Tomfohr, J. K. and Sankey, O.F., phys. stat. sol. (b) 233, 59 (2002).Google Scholar
18. Demkov, A.A. and Sankey, O.F., Phys. Rev. Lett. 83, 2038 (1999).Google Scholar
19. Fonseca, L., Demkov, A.A., and Knizhnik, A., phys. stat. sol. (b) 239, 48 (2003).Google Scholar
20. Hou, Y. T., Li, M. F., Yu, H. Y., and Kwong, K. L., Proceedings of the 2003 Symposia on VLSI Technology and Circuits (VLSI 2003).Google Scholar
21. Zhang, X., Demkov, A.A., Li, Hao, Hu, X., Wei, Yi, and Kulik, J., Phys. Rev. B 68, 125323 (2003).Google Scholar
22. Chambers, S., Liang, Y., Yu, Z., Droopad, R., Ramdani, J., and Eisenbeiser, K., Appl. Phys. Lett. 77, 1662 (2000).Google Scholar
23. Milman, V., Winkler, B., White, J. A., Pickard, C. J., Payne, M. C., Akhmatskaya, E. V., Nobes, R. H., J. Quant. Chem. 77, 895 (2000).Google Scholar