Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-16T19:44:25.389Z Has data issue: false hasContentIssue false

Band Discontinuity Effect on a-Si:H and a-SiGe:H Solar Cells

Published online by Cambridge University Press:  15 February 2011

X. Xu
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084
A. Banerjee
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084
J. Yang
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084
S. Guha
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084
K. Vasanth
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

The electrical bandgap of microcrystalline silicon (μc-Si:H) p type layers used in a-Si:H alloy solar cells and the band edge discontinuities between μc-Si:H and a-Si:H alloys have been determined by internal photoemission measurements. The bandgap of μc-Si:H is found to be in the range of 1.50 to 1.57 eV, and the discontinuities at the conduction and the valence band edges are 0 to 0.07 and 0.26 to 0.35 eV, respectively. Use of these parameters in the numerical simulation of single-junction a-Si:H and a-SiGe:H alloy solar cells is found to predict experimental results of solar cell performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, J. and Guha, S., Appl. Phys. Lett. 61, 2917 (1992).Google Scholar
2. Guha, S., Yang, J., Banerjee, A., Glatfelter, T., Hoffinan, K., Ovshinsky, S. R., Izu, M., Ovshinsky, H. C., and Deng, X., Mat. Res. Soc. Symp. Proc. 336, 645 (1994).Google Scholar
3. Guha, S., Yang, J., Nath, P., and Hack, M., Appl. Phys. Lett. 49, 218 (1986).Google Scholar
4. Evangelisti, F., J. Non-Cryst. Solids 77&78, 969 (1985).Google Scholar
5. Matsuura, H. and Okusili, H., in Amorphous & Microcrystalline Semiconductor Devices, Vol. II, ed. by Kanicki, J., Artech House (1992), p. 517.Google Scholar
6. Mimura, H. and Hatanaka, Y., Appl. Phys. Lett. 50, 326 (1987).Google Scholar
7. Cuniot, M. and Marfaing, Y., Philos. Mag. B 57, 291 (1988).Google Scholar
8. Guha, S. et al., Final Report, SERI/TP-211–3918, National Renewable Energy Laboratory, Golden, Colorado, 1990.Google Scholar
9. Kane, E. O., Phys. Rev. 127, 131 (1962).Google Scholar
10. Lee, S., Arch, J. K., Fonash, S. J., and Wronski, C. R., Proc. 21st IEEE PVSC, 1624 (1990).Google Scholar
11. Chen, I. and Wronski, C. R., J. Non-Cryst. Solids, to be published.Google Scholar
12. Xu, X., Yang, J., Banerjee, A., Guha, S., Vasanth, K., and Wagner, S., to be published.Google Scholar
13. Arch, J. K., Rubinelli, F. A., Hou, J. Y., and Fonash, S. J., J. Appl. Phys. 69, 7057 (1991).Google Scholar
14. Banerjee, A., Xu, X., Yang, J., and Guha, S., to be presented in this conference.Google Scholar