Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-06T21:01:19.807Z Has data issue: false hasContentIssue false

Biaxially-Textured YBa2Cu3O7–x Thin Film Growth on Polycrystalline and Amorphous Substrates Using Ion Assisted Laser Deposition of Yttria-Stabilized Zirconia Intermediate Layers

Published online by Cambridge University Press:  01 January 1992

R. P. Reade
Affiliation:
Lawrence Berkeley Laboratory, 1 Cyclotron Road., Berkeley, CA 94720
P. Berdahl
Affiliation:
Lawrence Berkeley Laboratory, 1 Cyclotron Road., Berkeley, CA 94720
R. E. Russo
Affiliation:
Lawrence Berkeley Laboratory, 1 Cyclotron Road., Berkeley, CA 94720
S. M. Garrison
Affiliation:
Conductus, Inc., 969 West Maude Avenue, Sunnyvale, CA 94086
Get access

Abstract

The growth of (001)-textured, biaxially-aligned yttria-stabilized zirconia (YSZ) intermediate layers on amorphous or randomly-oriented polycrystalline substrates is desirable for subsequent YBa2Cu3O7–x (YBCO) c-axis thin film growth. Laser deposition of YSZ on polycrystalline metal substrates (Haynes Alloy #230) in 1.0 millitorr oxygen at 70°C produces partial (001) texture but no alignment of in-plane axes. Highly-textured biaxially-aligned layers are obtained by using an ion beam to assist growth. Similar layers are obtained on amorphous silica and polycrystalline alumina substrates. The effects of ion-beam parameters including incident angle, source gas, and beam voltage and current are presented. Highly c-axis-oriented, biaxiallyaligned YBCO thin films have been deposited in situ on these YSZ layers, with Tc(R=0) ∼ 92K and Jc(77K) = 6 × 105 A/cm2. Angular magnetoresistance data shows a dip in resistance with magnetic field normal to the film, in contrast to films grown epitaxially on single crystal substrates, which have maximum resistance with field normal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Russo, R. E., Reade, R. P., McMillan, J. M., and Olsen, B. L., J. Appl. Phys. 68, 1354 (1990).Google Scholar
2. Reade, R. P., Mao, X. L., and Russo, R. E., Appl. Phys. Lett. 59, 739 (1991).Google Scholar
3. Narumi, E., Song, L. W., Yang, F., Patel, S., Kao, Y. H., and Shaw, D. T., Appl. Phys. Lett. 58, 1202 (1991).Google Scholar
4. Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M, Connel, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).Google Scholar
5. Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).Google Scholar
6. Norton, D. P., Lowndes, D. H., Budai, J. D., Cristen, D. K., Jones, E. C., Lay, K. W., and Tkaczyk, J. E., Appl. Phys. Lett. 57, 1164 (1990).Google Scholar
7. YIu, L.S., Harper, J. M. E., Cuomo, J. J., and Smith, D. A., Appl. Phys. Lett. 47, 932 (1985).Google Scholar
8. Bradley, R. M., Harper, J. M. E., and Smith, D. A., J. Appl. Phys. 60, 4160 (1986).Google Scholar
9. Reade, R. P., Berdahl, P., Russo, R. E., and Garrison, S. M., Appl. Phys. Lett. 61, 2231 (1992).Google Scholar
10. lijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
11. Berdahl, P., Mao, X. L., Reade, R. P., Russo, R. E., Rubin, M. D., and Yin, E., Physica C 195, 93 (1992).Google Scholar