Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T14:22:44.687Z Has data issue: false hasContentIssue false

Blue-green-red LEDs based on InGaN Quantum Dots by Plasma-assisted MBE using GaN QDs for Dislocation Filtering

Published online by Cambridge University Press:  01 February 2011

Tao Xu
Affiliation:
taoxu@bu.edu, Boston University, Electrical and Computer Engineering, 8 Saint Mary's St, Boston, MA, 02215, United States
Alexey Yu Nikiforov
Affiliation:
alnik@bu.edu, Boston University, Electrical and Computer Engineering, 8 Saint Mary's Street, Boston, MA, 02215, United States
Ryan France
Affiliation:
rfrance@bu.edu, Boston University, Electrical and Computer Engineering, 8 Saint Mary's Street, Boston, MA, 02215, United States
Christos Thomidis
Affiliation:
cthomidi@bu.edu, Boston University, Electrical and Computer Engineering, 8 Saint Mary's Street, Boston, MA, 02215, United States
Adrian Williams
Affiliation:
adrian@bu.edu, Boston University, Electrical and Computer Engineering, 8 Saint Mary's Street, Boston, MA, 02215, United States
Theodore D. Moustakas
Affiliation:
moustakas@bu.edu, Boston University, Electrical and Computer Engineering, 8 Saint Mary's Street, Boston, MA, 02215, United States
Lin Zhou
Affiliation:
lin.zhou.3@asu.edu, Arizona State University, Center for Solid State Science and Department of Physics and Astronomy, Tempe, AZ, 85287, United States
David J Smith
Affiliation:
david.smith@asu.edu, Arizona State University, Center for Solid State Science and Department of Physics and Astronomy, Tempe, AZ, 85287, United States
Get access

Abstract

In this paper, we report the development of blue-green-red LEDs based on InGaN quantum dots (QDs) and quantum wells in the active region, and GaN QDs in the nucleation layer for dislocation filtering, by plasma assisted molecular beam epitaxy. Self-assembled InGaN QDs and GaN QDs were grown in the Stranski-Krastanov mode. For the GaN QDs grown at 770 °C, the height distribution of the dots shows a bimodal distribution, which can be attributed to the interaction of the GaN QDs with the threading dislocations. TEM and XRD studies indicate that GaN QDs in the nucleation region help threading dislocations to deviate and annihilate. The average dot height, diameter and density of the InGaN QDs were estimated to be 3 nm, 30 nm and 7×1010 cm−2, respectively. The cathodoluminescence emission peak of the InGaN/GaN multiple layer quantum dots (MQDs) was found to red shift 330 meV with respect to the emission peak of the uncapped single layer of InGaN QDs due to Quantum Confined Stark effect. Blue LEDs based on InGaN/GaN multiple quantum wells (MQWs) as well as green and red LEDs based on InGaN MQDs emitting at 440 nm, 560 nm and 640 nm with FWHM of 30 nm, 87 nm and 97 nm, respectively, were grown and fabricated. The electroluminescence peak positions of both the green and red InGaN MQD LEDs are shown to be more blue-shifted with increasing injection current than that of the blue InGaN/GaN MQW LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jap. J. of App. Phy. 34, L797 (1995).Google Scholar
2. Lumileds SSL workshop 2003.Google Scholar
3. Doppalapudi, D., Basu, S. N., and Moustakas, T. D., J. Appl. Phys. 85, 883 (1999).Google Scholar
4. Misra, M., Korakakis, D., Ng, H. M., and Moustakas, T. D., Appl. Phys. Lett. 74 (15), 2203 (1999).Google Scholar
5. Dudiy, S. V. and Zunger, Alex, Appl. Phys. Lett. 84, 1874 (2004)Google Scholar
6. Adelmann, C., Simon, J., Feuillet, G., Pelekanos, N. T., and Daudin, B., Appl. Phys. Lett. 76 (12), 1570 (2000).Google Scholar
7. Yamaguchi, T., Einfeldt, S., Figge, S., Kruse, C., Roder, C., and Hommel, D. Mat. Res. Soc. Proc. Vol. 831, E2.2, 2005.Google Scholar
8. Damilano, B., Grandjean, N., Vezian, S., and Massies, J., J. of Crystal Growth, 227–228, 466 (2001).Google Scholar
9. Tachibana, K., et al., Appl. Phys. Lett. 74 (3), 383 (1999); J. Zhang, et al., Appl. Phys. Lett. 80 (3), 485 (2002); H. J. Kim, et al., J. of Crystal Growth, 269, 95 (2004); Z. Chen, et al., J. of Crystal Growth 235, 188 (2002).Google Scholar
10. Ji, L.-W., Su, Y. K., Chang, S. J., Chang, C. S., Wu, L. W., Lai, W. C., Du, X. L., and Chen, H., J. of Crystal Growth 263, 114 (2004).Google Scholar
11. Damilano, B., Grandjean, N., Massies, J., Siozade, L., and Leymarie, J., Appl. Phys. Lett. 77 (9), 1268 (2000).Google Scholar
12. Xu, T., Williams, A., Thomidis, C., Zhou, L., Smith, D. J. and Moustakas, T. D., Mat. Res. Soc. Proc. Vol. 831, E2.4, 2005.Google Scholar
13. Xu, T., Thomidis, C., Friel, I., and Moustakas, T. D., Phys. Stat. Sol. (c), 2(7), 2220 (2005).Google Scholar
14. Xu, T., Nikiforov, A. Y., France, R., Thomidis, C., Williams, A. and Moustakas, T. D. (to be published).Google Scholar
15. Xu, T., Thomidis, C., Nikiforov, A. Yu, France, R., Moustakas, T. D., Zhou, L. and Smith, D. J. (to be published).Google Scholar
16. Xu, T., Zhou, L., Wang, Y., Ozcan, A., Smith, D. J., Ludwig, K. J., and Moustakas, T. D. (to be published).Google Scholar
17. Perlin, P., Kisielowski, C., Iota, V., Weinstein, B. A., Mattos, L., Shaprio, N. A., Kruger, J., Weber, E. R., and Yang, J., Appl. Phys. Lett. 73, 2778 (1998).Google Scholar
18. Ding, Y. J., Reynolds, D. C., Lee, S. J., Khurgin, J. B., Rabinovich, W. S., and Katzer, D. S., Appl. Phys. Lett. 71 (18), 2581 (1997).Google Scholar