Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T13:16:48.078Z Has data issue: false hasContentIssue false

Bonding, Structure and Properties of Metal/Ceramic Interfaces

Published online by Cambridge University Press:  15 February 2011

James M. Howe*
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903
Get access

Abstract

This paper reviews the effects of chemical bonding, reaction, interfacial structure, fabrication, specimen geometry and testing conditions on the strength and fracture behavior of metal/ceramic interfaces. It is shown that a number of important properties of metal/ceramic interfaces such as the wetting behavior and work of adhesion can be qualitatively predicted from simple bonding models based on the elements in the metal and ceramic. In addition, the interfacial structure can often be predicted from principles of equilibrium thermodynamics and minimization of interfacial energy for relatively thick metal/ceramic layers. More quantitative description of interfacial structure employing atomistic calculations has been performed for simple interfaces and this area is progressing. The fracture behavior of metal/ceramic interfaces is a complicated process which depends on many factors such as the specimen geometry and loading conditions, strength of the interfacial bond, thermal, elastic and fracture properties of the metal and ceramic, thickness of the metal layer and testing environment. Advances in this area include the development of favorable specimen geometries for measuring interface properties and an understanding of the relationship among the phase angle of loading, crack trajectory and interface fracture energy for these geometries. Conversely, little is known about the stress corrosion and fatigue behavior of metal/ceramic interfaces although data on these time dependent failure modes are beginning to appear in the literature. Much progress has been made but considerably more work isneeded to understand the properties of metal/ceramic interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chawla, K. K., Composite Materials. Science and Engineering (Springer-Verlag Publishers, New York, 1987).Google Scholar
2. Klomp, J. T., in Surfaces and Interfaces of Ceramic Materials, edited by Dufour, L.-C. et al. (Kluwer Academic Publishers, New York, 1989) p. 375; M. G. Nicholas, in Surfaces and Interfaces of Ceramic Materials, edited by L.-C. Dufour et al. (Kluwer Academic Publishers, New York, 1989), p. 393.Google Scholar
3. Nicholas, M. G., Mater. Sci. Forum, 29, 127 (1988).Google Scholar
4. Murr, L. E., Interfacial Phenomena in Metals and Alloys (Addison-Wesley Publishing Company, Reading, MA, 1975) p. 34.Google Scholar
5. Hondros, E. D., in Precipitation Processes in Solids (The Metallurgical Society of AIME, Warrendale, PA, 1978) p. 1.Google Scholar
6. Alonso, J. A. and March, N. H., Electrons in Metals and Alloys (Academic Press, London, 1989) p. 473.Google Scholar
7. Adamson, A. W., Physical Chemistry of Surfaces (Interscience Publishers, New York, 1960) p. 265.Google Scholar
8. Pauling, L., The Nature of the Chemical Bond, 2 ed. (Cornell University Press, New York, 1948) p. 69.Google Scholar
9. Naidich, Y., Progress in Surface and Membrane Science, 14, 353 (1981).CrossRefGoogle Scholar
10. Ramqvist, L., Inter. J. Powder Met., 1(4), 2 (1965).Google Scholar
11. Humenik, M. and Kingery, W. D., J. Amer. Cer. Soc., 37, 18 (1954).Google Scholar
12. McDonald, J. E. and Eberhart, J. G., Trans. AIME, 233, 512 (1965).Google Scholar
13. Naidich, Y. and Kolesnichenko, G. A., Russ. Met., 4, 141 (1968).Google Scholar
14. Schonberger, U., Andersen, O. K. and Methfessel, M., Acta Metall. Mater., 40, S1 (1992); D. M. Duffy, J. H. Harding and A. M. Stoneham, iid., S 11.Google Scholar
15. Klomp, J. T., in Ceramic Microstructures '86, Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987) p. 307.Google Scholar
16. Fecht, H. J. and Gleiter, H., Acta Metall., 33, 557 (1985).Google Scholar
17. Mader, W., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T. et al. (Mater. Res. Soc. Proc. 238, Pittsburgh, PA, 1992) p. 763.Google Scholar
18. Kato, M., Mater. Sci. Eng., A 146, 205 (1991).Google Scholar
19. Aaronson, H. I., Furuhara, T., Rigsbee, J. M., Reynolds, W. T. Jr., and Howe, J. M., Metall. Trans., 21A, 2369 (1990).Google Scholar
20. Dahmen, U., Acta Metall., 30, 63 (1982).Google Scholar
21. Fischmeister, H. F., Elssner, G., Gibbesch, B. and Mader, W., in Proc. MRS Inter. Meeting on Adv. Mater. Vol.8 – Metal-Ceramic Joints, edited by. Doyama, M. et al. (MRS, Pittsburgh, PA, 1989) p. 227.Google Scholar
22. Bollmann, W., Surf. Sci., 31, 1 (1972).Google Scholar
23. Balluffi, R. W., Brockman, A. and King, A. H., Acta Metall., 30, 1453 (1982).Google Scholar
24. Fecht, H. J., Acta Metall. Mater., 40, S39 (1992).Google Scholar
25. Hondros, E. D. and Seah, M. P., in Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (North-Holland Publishing Company, Amsterdam, 1983) p. 888.Google Scholar
26. Chelikowsky, R., Surf. Sci., 139, L197 (1984).Google Scholar
27. Wynblatt, P. and Ku, R. C., Surf. Sci., 65, 511 (1977).Google Scholar
28. Mackrodt, W. C., in Ceramic Microstructures ‘86, Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987) p. 271; W. D. Kingery, in Ceramic Microstructures ‘86, Role of Interfaces, edited by J. A. Pask and A. G.Evans (Plenum Press, New York, 1987), p. 281.Google Scholar
29. Dregia, S. A. and Wynblatt, P., Acta Metall. Mater., 39, 771 (1991); P. Bachen, P. Wynblatt and S. M. Foiles, Acta Metall. Mater., 39, p. 2681.CrossRefGoogle Scholar
30. Nutt, S. R., in Aluminum Alloys- Contemporary Research and Applications, edited by Vasudevan, A. K. and Doherty, R. D. (Academic Press, Inc., San Diego, CA, 1989) p. 389.Google Scholar
31. Nicholas, M. G., in Proc. MRS Inter. Meeting on Adv. Mater. Vol.8 – Metal-Ceramic Joints, edited by Doyama, M. et al. (MRS, Pittsburgh, PA, 1989) p. 54.Google Scholar
32. Ellsner, G., Suga, T. and Turwitt, M., J. de Physique, 46, C4597 (1985).Google Scholar
33. Klomp, J. T., in Ceramic Microstructures '86. Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987) p. 307.Google Scholar
34. Crispin, R. M. and Nicholas, M. G., J. Mater. Sci., 11, 17 (1976).Google Scholar
35. Lupis, C. H. P., Chemical Thermodynamics of Materials (North-Holland Publishing Company, Amsterdam, 1983).Google Scholar
36. Klomp, J. T., Colloque de Physique, 51, C1745 (1990).Google Scholar
37. Warren, R. and Andersson, C-H., Composites, 15, 101 (1984).Google Scholar
38. Huh, J. Y., Ph.D. Thesis, Carnegie Mellon University, 1993.Google Scholar
39. Tressler, R. E., Moore, T. L. and Crane, R. L., J. Mater. Sci., 8, 151 (1973).Google Scholar
40. Gundel, D. B. and Wawner, F. E., Scripta Metall. Mater., 25, 437 (1991).CrossRefGoogle Scholar
41. Backhaus-Ricoult, M., Acta Metall. Mater., 40, S95 (1992).Google Scholar
42. Metcalfe, A. G., in Composite Materials. Vol.4 – Metallic Matrix Composites, edited by Kreider, K. G. (Academic Press, New York, 1974) p. 269.Google Scholar
43. Zener, C., J. Appl. Phys., 20, 950 (1949).Google Scholar
44. Darby, B.: in Ceramic Microstructures '86. Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987) p. 319.Google Scholar
45. Gibbesch, B. and Elssner, G., Acta Metall. Mater., 40, S59 (1992).Google Scholar
46. Klomp, J. T., J. Mater. Sci., 15, 2483 (1980).Google Scholar
47. Morozumi, S., Kikuchi, M. and Nishino, T., J. Mater. Sci., 16, 2137 (1981).Google Scholar
48. Suzumura, A., Onzawa, T., Budhi, S. K., Ohmori, A. and Arata, Y., in Proc. MRS Inter. Meeting on Adv. Mater. Vol.8 – Metal-Ceramic Joints, edited by Doyama, M. et al. (MRS, Pittsburgh, PA, 1989) p. 269; K. Miyazawa, S. Matsuoka, T. Fujii and T. Suga, in Proc. MRS Inter. Meeting on Adv. Mater. Vol.8 – Metal-Ceramic Joints, edited by M. Doyama et al. (MRS, Pittsburgh, PA, 1989), p. 275.Google Scholar
49. Ratnaparkhi, P. L. and Howe, J. M., Acta Metall. Mater. (in press).Google Scholar
50. Peteeves, S. D., Tambuyser, P., Helbach, P., Audier, M., Laurent, V. and Chatain, D., J. Mater. Sci., 25, 3765 (1990).Google Scholar
51. Ning, X. S., Okamoto, T., Miyamoto, Y., Koreeda, A. and Suganuma, K., J. Mater. Sci., 26, 4142 (1991).Google Scholar
52. Scott, P. M., Nicholas, M. and Dewar, B., J. Mater. Sci., 10, 1833 (1975).Google Scholar
53. Miura, K., Narita, T. and Ishikawa, T., in Proc. MRS Inter, Meeting on Adv. Mater. Vol.8 – Metal-Ceramic Joints, edited by Doyama, M. et al. (MRS, Pittsburgh, PA, 1989) p. 29; S-I. Tanaka, in Proc. MRS Inter, Meeting on Adv. Mater. Vol.8 – Metal-Ceramic Joints, edited by M. Doyama et al. (MRS, Pittsburgh, PA, 1989), p. 91.Google Scholar
54. Ellsner, G., Suga, T. and Turwitt, M., J. de Physique, 46, C4597 (1985).Google Scholar
55. Suga, T. and Elssner, G., J. de Physique, 46, C4657 (1985).Google Scholar
56. Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater., 40, S295 (1992).Google Scholar
57. Cannon, R. M., Dalgleish, B. J., Dauskardt, R. H., McNaney, J. M. and Ritchie, R. O., J. Amer. Cer. Soc. (in press).Google Scholar
58. Reimanis, I. E., Dalgleish, B. J., Brahy, M., Ruhle, M. and Evans, A. G., Acta Metall. Mater., 38, 2645 (1990).Google Scholar
59. Reimanis, I. E., Dalgleish, B. J. and Evans, A. G., Acta Metall. Mater., 39, 3133 (1991).Google Scholar
60. Oh, T. S., Rodel, J., Cannon, R. M. and Ritchie, R. O., Acta Metall., 36, 2083 (1988).Google Scholar
61. Oh, T. S., Cannon, R. M. and Ritchie, R. O., in Proc. MRS Inter. Meeting on Adv. Mater. Vol.8 – Metal-Ceramic Joints, edited by Doyama, M. et al. (MRS, Pittsburgh, PA, 1989) p. 105.Google Scholar
62. Evans, A. G., Dalgleish, B. J., He, M. and Hutchinson, J. W., Acta Metall., 37, 3249 (1989).Google Scholar
63. Suo, Z. and Hutchinson, J. W., Mater. Sci. Eng., A 107, 135 (1989).Google Scholar
64. Rice, J., J. Appl. Mech., 55, 98 (1988).Google Scholar
65. Dundurs, J., J. Appl. Phys., 36, 650 (1969).Google Scholar
66. Suga, T. and Elssner, G., in Proc. MRS Inter. Meeting on Adv. Mater. Vol, 8 – Metal- Ceramic Joints, edited by Doyama, M. et al. (MRS, Pittsburgh, PA, 1989) p. 99.Google Scholar
67. Cao, H. C., Thouless, M. D. and Evans, A. G., Acta Metall., 36, 2037 (1988).CrossRefGoogle Scholar
68. Evans, A. G., Ruhle, M. and Turwitt, M., J. de Physique, 46, C4613 (1985).Google Scholar
69. Evans, A. G. and Wiederhom, S. M., Inter. J. Fracture, 10, 379 (1974).Google Scholar
70. Oh, T. S., Cannon, R. M. and Ritchie, R. O., J. Amer. Cer. Soc., 70, C352 (1987).Google Scholar
71. Wei, R. P., Novak, S. R. and Williams, D. P., Mater. Res. Stand., 12, 25 (1972).Google Scholar
72. Cannon, R. M., Dalgleish, B. J., Dauskardt, R. H., Oh, T. S. and Ritchie, R. O., Acta Metall. Mater., 39, 2145 (1991).Google Scholar