Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-06T03:17:11.406Z Has data issue: false hasContentIssue false

Carbon nanotube surface chemistry and its effects on interfacial nanomechanics

Published online by Cambridge University Press:  01 February 2011

Asa H. Barber
Affiliation:
Wagner Department of Materials and Interfaces & Weizmann Institute of Science Rehovot 76100, ISRAEL
Sidney R. Cohen
Affiliation:
Chemical Research Support, Weizmann Institute of Science Rehovot 76100, ISRAEL
H. Daniel
Affiliation:
Wagner Department of Materials and Interfaces & Weizmann Institute of Science Rehovot 76100, ISRAEL
Get access

Abstract

Individual multi-walled carbon nanotube pullout experiments were used to measure the adhesion strength at a nanotube-epoxy polymer interface. The interfacial strength was found, as expected, to increase when the nanotubes were chemically treated to induce strong bonding with the polymer matrix. At long nanotube embedment lengths within the polymer, the nanotubes were seen to fracture in preference to failure at their interface with the polymer. Interfacial mechanics models are applied to the data to describe interfacial adhesion at the nano-level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yu, M-F., et al., Science 287, 637 (2000)Google Scholar
2. Yu, M-F., Files, B. S., Arepalli, S. & Ruoff, R. S., Phys. Rev. Lett. 84, 5552 (2000)Google Scholar
3. Demczyk, B. G. et al., Mat. Sci. Eng. A 334, 173 (2002)Google Scholar
4. Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M., Nature 381, 678 (1996)Google Scholar
5. Krishnan, A. et al, Phys. Rev. B. 58, 14013 (1998)Google Scholar
6. Wong, W., Sheehan, P. E. & Lieber, C. M., Science 277, 1971 (1997)Google Scholar
7. Li, R. Z., Ye, L. & Mai, Y. W., Compos. A. 28, 73 (1997)Google Scholar
8. Chen, J. et al., Science 282, 95 (1998)Google Scholar
9. Wagner, H. D., Lourie, O., Feldman, Y. & Tenne, R., Appl. Phys. Lett. 72, 188 (1998)Google Scholar
10. Cooper, C. A., Cohen, S. R., Barber, A. H., Wagner, H. D., Appl. Phys. Lett. 81, 3873 (2002)Google Scholar
11. Barber, A. H., Cohen, S. R., Wagner, H. D., Appl. Phys. Lett. 82, 4140 (2003)Google Scholar
12. Barber, A. H., Cohen, S. R., Kenig, Shmuel & Wagner, H. D., Compos. Sci. Tech. 62, 2283 (2004)Google Scholar
13. Eitan, A., Jiang, K., Dukes, D., Andrews, R., Schadler, L. S., Chem. Mater. 15, 3198 (2003)Google Scholar
14. Nishijima, H. et al. Appl. Phys. Lett. 74, 4061 (1999)Google Scholar
15. Eitan, A., Jiang, K., Dukes, D., Andrews, R., Schadler, L. S., Chem. Mater. 15, 3198 (2003)Google Scholar
16. Sader, J. E., Chon, J. W. M., Mulvaney, P., Rev. Sci. Instr. 70, 3967 (1999)Google Scholar
17. Cox, H. L., Brit. J. Appl. Phys. 3, 72 (1952)Google Scholar