Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-24T02:33:10.407Z Has data issue: false hasContentIssue false

A Carrier Lifetime Model for the Optical Degradation of Amorphous Silicon Solar Cells

Published online by Cambridge University Press:  28 February 2011

Z E. Smith
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

The light-induced performance degradation of amorphous silicon solar cells is described well by a model in which the carrier lifetimes are determined by the dangling bond density. The kinetics of the defect generation follow the model in which band-to-band recombination provides the energy for the creation of dangling bonds, which in turn introduce gap states that reduce carrier lifetime. Degradation will be slower in solar cells operating at lower excess carrier concentrations. This is documented with a comparison of degradation data for cells of different i-layer thickness, cells operating at open circuit vs. load, and for single vs. cascade cells. The model also correctly predicts the relation between short circuit current and fill factor degradation. At sufficiently long times, the efficiency will decrease at approximately the same rate for all cell structures and dimensions, with an offset in time between different device types which can be calculated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Staebler, D.L and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
[2] Dersch, H., Stuke, J. and Beichler, J., Appl. Goldstein, Smith, R.W., Zanzucchi, P.J. and Phys. Lett. 38, 456 (1980).Google Scholar
[3] Cohen, J.D., Lang, D.V., Harbison, J.P. and Sergent, A.M.. Solar Cells 9. 119 (1983).Google Scholar
[5] Street, R.A., Appl. Phys. Lett. 41, 1060 (1962).Google Scholar
[6] Street, R.A., Appl. Phys. Lett. 42, 507 (1983).Google Scholar
[7] Carlson, D.E., Moore, A.R., Szostak, D.J., Goldstein, B., Smith, R.W., Zanzucchi, P.J. and Frenchu, W.R., Solar Cells 9, 19 (1983).Google Scholar
[8] Tawada, Y., Nishimura, K., Nonomura, S., Okamato, H. and Hamakawa, Y., Solar Cells 9, 53 (1983).Google Scholar
[9] Sakata, I. and Hayashi, Y., IEEE Trans. Electron Dev. ED–32, 551 (1985).Google Scholar
[10] Guanghua, C., Fangqing, Z. and Xixiang, X., Technical Digest of the International PVSEC-1 (Kobe, Japan, 1984) p. 421.Google Scholar
[11] Szostak, D.J. and Goldstein, B., J. Appl. Phys. 56, 522 (1984).Google Scholar
[12] Stutzmann, M., Jackson, W.B. and Tsai, C.C., Appl. Phys. Lett. 45, 1075 (1984).Google Scholar
[13] Stutzmann, M., Jackson, W.B. and Tsai, C.C., in Opt. Eff. in Arnorph. Semicond. (AIP Conf. Th'oc. 120, Snowbird, Utah, 1984) p. 213.Google Scholar
[14] Fritzsche, H., in Opt. Eff. in Amorph. Semicond. (AIP Conf. Proc. 120, Snowbird, Utah, 1984) p. 478.Google Scholar
[15] Adler, D., Solar Cells 9, 133 (1983); D. Adler, J. Phys. (Paris), Colloq. C4 42, 3 (1981).Google Scholar
[16] Pankove, J.I. and Berkeyheiser, J.E., Appl. Phys. Lett. 317, 705 (1980).Google Scholar
[17] Eberhart, M.E., Johnson, K.H. and Adler, D., Phys. Rev. B 26,3138 (1982).Google Scholar
[18] Guha, S., Appl. Phys. Lett. 45, 569 (1984).Google Scholar
[19] Fig. 4 of Lee, C., Olsen, W.D., Taylor, P.C., Ullal, H.S. and Ceasar, G.P., in Opt. Eff. in Amorph. Semicond. (AIP Conf. Proc. 120, Snowbird, Utah, 1984) p. 205.Google Scholar
[20] Faughnan, B. and Crandall, R., Appl. Phys. Lett. 44, 537 (1984).Google Scholar
[21] Nonomura, S., Okamoto, H., Kida, H. and Hamakawa, Y., Jap. J. Appl. Phys. 21, Suppl. 21-2, 279 (1982).Google Scholar
[22] Lampert, M.A. and Schilling, R.., in Semiconductors and Semmrnetats 6, edited by Beer, A. (Academic Press, New York, 1970) p. 1.Google Scholar
[23] Crandall, R.S., J. Appl. Phys. 54, 7176 (1983).Google Scholar
[24] Crandall, R.S., J. Appl. Phys. 55, 4418 (1984).Google Scholar
[25] Hecht, K., Z. Phys. 77, 235 (1932).Google Scholar
[26] Theory: Hack, M., Shur, M., Czubatyj, W., Yang, J. and McGill, J., J. Non-Cryst. Solids 59&60, 1115 (1983); Experiment: H. Schade, Z E. Smith and A. Catalano, Solar Energy Mat. 10, 317 (1984).Google Scholar
[27] Faughnan, B.W., RCA Laboratories, private communication.Google Scholar
[28] Uchida, Y., Nishiura, M., Sakai, H. and Haruki, H., Solar Cells 9, 3 (1983).Google Scholar
[29] Schade, H. and Smith, Z E., J. Appl. Phys. 57, 568 (1985).Google Scholar
[30] Williams, R., Inner Mongolia Electronics 2, 1 (1984) [in Chinese].Google Scholar
[31] Tsuda, S., Nakamura, N., K Watanabe, Takahama, T., Nishiwaki, H., Ohnishi, M. and Kuwano, Y., Solar Cells 9, 25 (1983).Google Scholar
[32] Swartz, G.A., J. Appl. Phys. 53, 712 (1982).Google Scholar
[33] Nakamura, G., Sato, K, Ishihara, T., Usui, M., K Okaniwa and Yukimoto, Y., J. Non-Cryst. Solids 59&60, 1111 (1983).Google Scholar
[34] Nakamura, G., Sato, K. and Yukimoto, Y., Solar Cells 9, 75 (1983).Google Scholar
[35] Konagai, M., Matsushita, T., Sichanugrist, P., Takahashi, K. and Komori, K., Proc. of the 17th IEEE Photovoltaic Spec. Conf., Kissimmnee, FL (IEEE Press, New York, 1984) p. 347.Google Scholar
[36] Catalano, A., Faughnan, B.W. and Moore, A.R., Technical Digest of the International PVSEC-1, Late News Section (Kobe, Japan, 1984) p. 3.Google Scholar
[37] Street, R.A., Zesch, J. and Thompson, M.J., Appl. Phys. Lett. 43, 672 (1983).Google Scholar
[38] Ullal, H.S., Morel, D.L., Willet, D.R., Kanani, D., Taylor, P.C. and Lee, C., Proc. of the 17th IEEE Photovoltaic Spec. Conf., Kisissimmee, FL (IEEE Press, New York, 1984) p. 359.Google Scholar