Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-11T10:57:56.626Z Has data issue: false hasContentIssue false

Carrier Transport in Polycrystalline and Amorphous Silicon Thin Film Transistors

Published online by Cambridge University Press:  28 February 2011

T. Sameshima
Affiliation:
Sony Research Center, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama 240 Japan
M. Sekiya
Affiliation:
Sony Research Center, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama 240 Japan
M. Hara
Affiliation:
Sony Research Center, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama 240 Japan
N. Sano
Affiliation:
Sony Research Center, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama 240 Japan
A. Kohno
Affiliation:
Kyushu University, 6-1 Hakozaki, Higashi-ku, Fukuoka 812 Japan
Get access

Abstract

The technologies of laser crystallization and methods of SiO2 formation in remote plasma chemical vapor deposition or SiO evaporation with an oxygen ambient realize the fabrication of n-channel polycrystalline and amorphous silicon thin film transistors (poly-Si and a-Si TFTs) at a temperature lower than 300 °C. The defect density was achieved to be 2∼3×1011 cm−2eV−1 and threshold voltage was about IV for both TFTs. The maximum field effect mobility was 600 cm2/Vs for poly-Si TFTs and 2.6 cm2/Vs for a-Si TFTs. The mobility of poly-Si TFT decreased as the gate voltage increases. This is interpreted as that the electrons are confined in the narrow inversion layer and electron scattering with phonon is enhanced for higher normal electric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sameshima, T., Usui, S. and Sekiya, M., IEEE Electron Dev. Lett. EDL–7, 276 (1986).Google Scholar
2 Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., and Hotta, K., IEEE Trans. Electron. Devices, 36, 2868 (1989).Google Scholar
3 Sameshima, T., Mat. Res. Soc. Symp. Proc. 283, 679 (1993).Google Scholar
4 Serikawa, T., Shirai, S., Okamoto, A., and Suyama, S., IEEE Trans. Electron. Dev. 36, 1929 (1989).Google Scholar
5 Kim, S., Stephen, D. J., Lucovsky, G., Fountain, G. G., and Markunas, R. J., J. Vac. Sci. Technol., A8, 2039 (1990).Google Scholar
6 Mizutani, T., Yunogami, T. and Tsujimoto, K., Appl. Phys. Lett., 57, 1654 (1990).Google Scholar
7 Fogarassy, E., Fuchs, C., Slaoui, A., de Unamuno, S. and Stoquert, J.P., Marine, W. and Lang, B., J. Appl. Phys. 76, 2612 (1994).Google Scholar
8 Sekiya, M., Hara, M., Sano, N., Kohno, A. and Sameshima, T., IEEE Electron Device Letters, EDL-15, 69 (1994).Google Scholar
9 Sano, N., Kohno, A., Hara, M., Sekiya, M. and Sameshima, T., Appl. Phys. Lett. 65, 162 (1994).Google Scholar
10 Kohno, A., Sameshima, T., Sano, N., Sekiya, M. and Hara, M.: to be published to IEEE Trans Elecron Device.Google Scholar
11 Sameshima, T., Kohno, A., Sekiya, M., Hara, M., Sano, N., Appl. Phys. Lett., 64 1018 (1994).Google Scholar
12 Sameshima, T., Kohno, A., Sekiya, M., Hara, M. and Sano, N., Jpn.J.Appl.Phys.Lett., 33, 834 (1994).Google Scholar
13 Sameshima, T., Hara, M. and Usui, S., Jpn. J. Appl. Phys. 28, 1789 (1989).Google Scholar
14 Sameshima, T. and Usui, S., Jpn.J.Appl.Phys.Lett., 26, 1208 (1987).Google Scholar
15 Sano, N., ohno, A.K, Hara, M., Sekiya, M. and Sameshima, T., submitted to IEEE Electron Device Letters.Google Scholar
16 Sameshima, T. and Langguth, G., submitted to J. Appl. Phys.Google Scholar
17 Sze, S.M., Physics of Semiconductor Devices 2nd edition (John Wiley & Sons New York, 1981) Chapter 8.Google Scholar
18 Shur, M., Hyun, C. and Hack, M., J. Appl. Phys. 59, 2488 (1986).Google Scholar
19 Powell, M.J., IEEE Trans. Electron Devices, 36, 2753 (1989).Google Scholar
20 Troutman, R.R. and Kotwal, A., IEEE Trans. Electron Devices, 36, 2915 (1989).Google Scholar
21 van Berkel, C., Hughes, J.R. and Powell, M.J., J. Appl. Phys. 66, 4488 (1989).Google Scholar
22 Shur, M., and Hack, M., J. Appl. Phys. 55, 3831 (1984).Google Scholar
23 Cooper, J.A. Jr. and Nelson, D.F., J. Appl. Phys. 54, 1445 (1983).Google Scholar
24 Schwarz, S.A. and Russek, S.E., IEEE Trans. Electron Devices, 30, 1634 (1983).Google Scholar
25 Sun, S.C. and Plummer, J.D., IEEE Trans. Electron Devices, 27, 1497 (1980).Google Scholar
26 Takagi, S., Iwano, M. and Toriumi, A., Proc. in Int. Conf. Dev. Mat 88, 398 (1988).Google Scholar
27 managa, S.I and Hayafuji, Y., J. Appl. Phys. 70, 1522 (1991).Google Scholar