Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-20T03:22:16.159Z Has data issue: false hasContentIssue false

Characteristics Analysis of Saw Filter Using Al0.36Ga0.64N Thin Film

Published online by Cambridge University Press:  01 February 2011

Sun-Ki Kim
Affiliation:
School of Electronic Engineering & Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Gu, Daegu, Korea, e-mail: yhlee@ee.knu.ac.kr
Min-Jung Park
Affiliation:
School of Electronic Engineering & Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Gu, Daegu, Korea, e-mail: yhlee@ee.knu.ac.kr
Cheol-Yeong Jang
Affiliation:
School of Electronic Engineering & Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Gu, Daegu, Korea, e-mail: yhlee@ee.knu.ac.kr
Hyun-Chul Choi
Affiliation:
School of Electronic Engineering & Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Gu, Daegu, Korea, e-mail: yhlee@ee.knu.ac.kr
Jung-Hee Lee
Affiliation:
School of Electronic Engineering & Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Gu, Daegu, Korea, e-mail: yhlee@ee.knu.ac.kr
Yong-Hyun Lee
Affiliation:
School of Electronic Engineering & Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Gu, Daegu, Korea, e-mail: yhlee@ee.knu.ac.kr
Get access

Abstract

AlxGa1-xN sample with x=0.36 was epitaxially grown on sapphire by MOCVD. SAW velocity of 5420 m/s and TCF (temperature coefficient of frequency) of -51.20 ppm/°C were measured from the SAW devices fabricated on the AlxGa1-xN sample, when kh value was 0.078, at temperatures between –30 °C and 60 °C Electromechanical coupling coefficient was ranged from 1.26 % to 2.22 %. The fabricated SAW filter have shown a good device performance with insertion loss of -33.853 dB and side lobe attenuation of 20 dB.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Okano, H. Tanaka, N. Takahashi, Y. Tamaka, T. Shibata, K. and Nakano, S. Appl. Phys. Lett. 64, 166168 (1994).Google Scholar
2. AsifKhan, M. Hu, X. Sumin, G. Yang, J. Gaska, R. and Shur, M. S. IEEE Electron Device Letters, Vol. 21, No. 2, 6365 (2000).Google Scholar
3. Clock, G. D. O and Morkoc, M. T. Appl. Phys. Lett., vol. 23, No. 2, 5556 (1973).Google Scholar
4. Deger, C. Born, E. Angerer, H. Ambacher, O. Stutzmann, M. Hornsteiner, J. Riha, E. and Fischerauer, G. Appl. Phys. Lett., Vol. 72, No. 19, 24002402 (1998).Google Scholar
5. Campell, C. K. Surface Acoustic Wave Devices for Mobile and Wireless Communications. New York: Academic, (1998).Google Scholar
6. Choi, K. H. Kim, Jin Yong, Kim, Hyeong Joon, Yang, Hyung Kook, and Park, Jong Chul, IEEE Ultrasonics Symp., 353356 (2000).Google Scholar
7. Brunner, D. Angerer, H. Bustarret, E. Freudenberg, f. Hopler, R. Dimitrov, R. Ambacher, O. and Stutzmann, M. J. Appl. Phys. 82(10), 15, November (1997).Google Scholar
8. Didenko, I. S. Hickernell, F. S. and Naumenko, N. F. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 179 (2000)Google Scholar
9. Tonami, S. Nishikata, A. and Shimizu, Y. Jpn. J. Appl., pt. 1, vol. 34, 26642667, May (1995).Google Scholar
10.T. Sato and Abe, H. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 45, Jan (1998).Google Scholar
11. Gualtieri, J. G. Kosinski, J. A. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 41, Jan (1994).Google Scholar
12. Lee, Suk-Hun, Jeong, Hwan-Hee, Bae, Sung-Bum, Choi, Hyun-Chul, Lee, Jung-Hee, and Lee, Yong-Hyun, IEEE Trans. Electron Devices, Vol. 48, 524529 (2001).Google Scholar