Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-09T05:21:54.553Z Has data issue: false hasContentIssue false

Characterization of an Extended Reactive Noble-Metal/III-V Semiconductor Interface: Cu/GaAs(110)

Published online by Cambridge University Press:  26 February 2011

J. J. Joyce
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
J. H. Weaver
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

We examine the electronic structure of the Cu/GaAs(110) interface using high resolution synchrotron radiation photoelectron spectroscopy. Analysis of valence band and core level spectra indicate that a reactive, extended interface is formed when Cu is deposited on the cleaved GaAs(110) surface at room temperature. Arsenic 3d core level data show a single reacted component shifted 500 meV to lower binding energy while the Ga 3d core shows a reacted component shifted by 800 meV below the substrate position. Core level attenuation curves indicate preferential As outdiffusion with the As signal at 30% of initial intensity for 100 ML of Cu while the Ga intensity for the same coverage has dropped to 2% of initial intensity. Band bending results show two separate regions of interest with a secondary pinning position 775 meV below the CBM for n-type GaAs. Results are discussed in light of thermodynamic and electronegativity parameters as well as other transition and rare-earth metal GaAs interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brillson, L.J., Surf. Sci. Rep. 2, 123 (1982) and 1050 references therein.Google Scholar
2. Ruckman, M.W., del Giudice, M., Joyce, J.J., and Weaver, J.H., Phys. Rev.-Rapid Commun. B, (in press).Google Scholar
3. Grioni, M., Joyce, J.J., and Weaver, J.H., J. Vac. Sci. Technol. A3, 918 (1985).Google Scholar
4. Weaver, J.H., Grioni, M., and Joyce, J.J., Phys. Rev. B 31, 5348 (1985).Google Scholar
5. Grioni, M., Joyce, J.J., and Weaver, J.H., J. Vac. Sci. Technol., (submitted) andGoogle Scholar
Weaver, J.H., Joyce, J.J., Ruckman, M.W., del Giudice, M., and Grioni, M., (metal/GaAs overview - in preparation)Google Scholar
6. Pan, S.H., Mo, D., Petro, W.G., Lindau, I., and Spicer, W.E., J. Vac. Sci. Technol. B1, 593 (1983).Google Scholar
7. Spicer, W.E., Newman, N., Kendelewicz, T., Petro, W.G., Williams, M.D., McCants, C.E., and Lindau, I., J. Vac. Sci. Technol. B3, 1178 (1985).Google Scholar
8. Ludeke, R., Surf. Sci. 132, 143 (1983).Google Scholar
9. Brillson, L.J., Bauer, R.S., Bachrach, R.Z., and Hansson, G. Phys. Rev. B 23, 6204 (1981).Google Scholar
10. Grioni, M., del Giudice, M., Joyce, J.J., and Weaver, J.H., J. Vac. Sci. Technol. A3, 907 (1985).Google Scholar
11. del Giudice, M., Joyce, J.J., Grioni, M., Ruckman, M.W., Chambers, S.A., and Weaver, J.H., Surf. Sci., (in press).Google Scholar
12. Weaver, J.H., Grioni, M., Joyce, J.J., and del Giudice, M., Phys. Rev. B 31, 5290 (1985).Google Scholar
13. Grioni, M., Joyce, J.J., and Weaver, J.H., Phys. Rev. B 32, 962 (1985).Google Scholar
14. Ludeke, R., Chiang, T.-C., and Miller, T. J. Vac. Sci. Technol. B1, 581 (1983).Google Scholar
15. Skeath, P., Su, C.Y., Hino, I., Lindau, I., and Spicer, W.E., Appl. Phys. Lett. 39, 349 (1981).Google Scholar
16. Pan, S.H., Kendelewicz, T., Petro, W.G., Williams, M., Lindau, I., and Spicer, W.E., Mat. Res. Soc. Symp. 25, 335 (1984)Google Scholar
17. Williams, M.D., Kendelewicz, T., List, R.S., Newman, N., McCants, C.E., Lindau, I., and Spicer, W.E., J. Vac. Sci. Technol. B3, 1202 (1985).Google Scholar
18. Tersoff, J., J. Vac. Sci. Technol. B3, 1157 (1985).Google Scholar
19. Spicer, W.E., Eglash, S., Lindau, I., Su, C.Y., and Skeath, P.R. Thin Solid Films 89, 447 (1982).Google Scholar
20. Chin, K.K., Pan, S.H., Mo, D., Mahowald, P., Newman, N., Lindau, I., and Spicer, W.E., Phys. Rev. B 32, 918 (1985).Google Scholar
21. Niessen, A.K., de Boer, F.R., Boom, R., Chatel, P.F., Mattens, W.C.M., and Miedema, A.R., CALPHAD 7, 51 (1983).Google Scholar
Heat of formation values do not necessarily correspond to compounds found in the bulk phase diagrams, they are the result of calculations found in the above reference and are used only for comparative purposes between possible metal/GaAs interface reaction products. A detailed discussion of interface thermodynamics can be found in Fujimori, A., Grioni, M., and Weaver, J. H., Phys. Rev. B 33, 726 (1986)Google Scholar
22. Brillson, L.J., J. Vac. Sci. Technol. 20, 652 (1982).Google Scholar
23. Brillson, L.J., Brucker, C.F., Stoffel, N.G., Katnani, A.D., and Margaritondo, G., Phys. Rev. Lett. 16, 838 (1981).Google Scholar
24. Shaw, D., Atomic Diffusion in Semiconductors, Plenum Press, New York, (1973).Google Scholar
25. Butera, R.A., del Giudice, M., and Weaver, J.H., Phys. Rev. B, (in press).Google Scholar