Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-21T07:19:39.894Z Has data issue: false hasContentIssue false

Characterization Of Er-Doped III-V Nitride Epilayers Prepared by Mombe

Published online by Cambridge University Press:  10 February 2011

J. M. Zavada
Affiliation:
U.S. Army Research Office, Research Triangle Park, NC 27709
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
R. N. Schwartz
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
J. D. MacKenzie
Affiliation:
MSE Department, University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
MSE Department, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
MSE Department, University of Florida, Gainesville, FL 32611
X. Wu
Affiliation:
Hampton University, Research Center for Optics, Department of Physics, Hampton, VA 23668
U. Hömmerich
Affiliation:
Hampton University, Research Center for Optics, Department of Physics, Hampton, VA 23668
Get access

Abstract

Er-doped AIN epilayers have been grown using metal-organic molecular beam epitaxy (MOMBE) with controlled Er densities. Cell temperatures greater than 1000°C were required for the Er solid source in order to achieve significant Er concentrations in the epilayers. Er densities in the 1019 to 1020 cm−3 range were confirmed using secondary ion mass spectrometry (SIMS), quantified using implanted standards. The epilayers were optically excited using an argon-ion laser and infrared luminescence spectra were measured over the temperature range 13 to 300 K. The spectra are centered at 1.54 μm and display features typical of the Er3+ configuration. These data demonstrate that high densities of Er atoms can be incorporated in AIN films during epitaxial growth and that the Er atoms give rise to the intra-4f transitions of the trivalent Er3+ ion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
2. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L 797 (1995).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H.,and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L 74 (1996).Google Scholar
4. Zavada, J. M. and Zhang, D., Solid-St. Electron. 38, 1285 (1995) and references therein.Google Scholar
5. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl. Phys. Lett. 65, 992 (1994).Google Scholar
6. Abernathy, C. R., J. Vac. Sci. Technol. A 11, 869 (1993).Google Scholar
7. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D., and Guillou, Y. L., Electron. Lett. 25, 718 (1989).Google Scholar