Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-07T20:51:36.884Z Has data issue: false hasContentIssue false

Characterization of Ion-Beam-Sputtered Molybdenum Films on N-Type Silicon

Published online by Cambridge University Press:  15 February 2011

F. D. Auret
Affiliation:
Ibm East Fishkill Laboratories, Hopewell Junction, NY 12533, (U.S.A.)
O. Paz
Affiliation:
Ibm East Fishkill Laboratories, Hopewell Junction, NY 12533, (U.S.A.)
N. A. Bojarczuk
Affiliation:
Ibm East Fishkill Laboratories, Hopewell Junction, NY 12533, (U.S.A.)
Get access

Abstract

The introduction of defect levels in the band gap of silicon (ND = 2.5×1015 cm−3), after ion beam sputtering of molybdenum contacts, was investigated with deep level transient spectroscopy and scanning electron microscopy (electron-beam-induced current mode). Molybdenum contacts were fabricated with beam voltages of 700, 1100 and 1500 V at a beam current density of 2.5 mA cm−2. Defect levels were observed at energies ranging from 0.18 to 0.55 eV below the conduction band. It was established that the introduction of these defect levels depends on the processing conditions and that they reside very close to the Mo-Si interface (less than 0.4 μtm). A correlation was observed between the fabrication conditions, the current-voltage and capacitance-voltage characteristics of the contacts, and the concentrations of the defects present. Charge collection micrographs confirmed the presence of a defective layer close to the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maissel, L. I., in Maissel, L. I. and Glang, R. (eds.), Handbook of Thin Film Technology, McGraw-Hill, New York, 1970, Chap. 4, pp. 144.Google Scholar
2 Muraka, S. P., J. Vac. Sci. Technol., 17 (1980) 775.CrossRefGoogle Scholar
3 Mullins, F. H. and Brunnsweiler, A., Solid-State Electron., 19 (1976) 47.CrossRefGoogle Scholar
4 Andersson, L. P. and Evwaraye, A. O., Vacuum, 28 (1)(1977) 5.Google Scholar
5 Grusell, E., Berg, S. and Andersson, L. P., J. Electrochem. Soc., 127 (7)(1980) 1573.Google Scholar
6 Berg, S., Andersson, L. P. and Grusell, E., Vacuum, 27 (3)(1976) 189.Google Scholar
7 Harper, J. M. E., in Vossen, J. L. and Kern, W. (eds.), Thin Film Processes, Academic Press, New York, 1978, pp. 175206.Google Scholar
8 Fonash, S. J., Ashok, S. and Singh, R., Appl. Phys. Lett., 39 (5)(1981) 423.CrossRefGoogle Scholar
9 Miller, G. L., Lang, D. V. and Kimerling, L. C., Annu. Rev. Mater. Sci., 7 (1977) 377.Google Scholar
10 Kimerling, L. C., Leamy, H. J., Benton, J. L., Ferris, S. D., Freeland, P. E. and Rubin, J. J., in Semiconductor Silicon 1977 Proc., Vol. 77–2, Electrochemical Society, Princeton, NJ, 1977, pp. 468480.Google Scholar
11 Bojarczuk, N. A., J. Vac. Sci. Technol., 18 (1981) 890.CrossRefGoogle Scholar
12 Kanaya, K. and Okayama, S., J. Phys. D., 5 (1972) 43.Google Scholar
13 Hanoka, J. I. and Bell, R. O, Annu. Rev. Mater. Sci., 11 (1981) 353380.Google Scholar
14 Sze, S. M., Physics of Semiconductor Devices, Wiley, New York, 1969, p.404, eqn.(79).Google Scholar
15 Calleja, E., Garrido, J., Piqueres, J. and Martinez, A., Solid–State Electron., 23 (1980) 591.Google Scholar
16 Lindhard, J., Scharff, M. and Schiott, H., K. Dan. Vidensk. Selsk., Mat.–Fys. Medd., 33 (1963) 1.Google Scholar
17 Kaufman, H. R., Harper, J. M. E. and Cuomo, J. J., IBM Res. Rep. RC 9497, July 1982.Google Scholar
18 Bean, J. C., Becker, G. E., Petroff, P. M. and Seidel, T. E., J. Appl. Phys., 48 (3)(1976) 907.CrossRefGoogle Scholar
19 Lindhard, J., K. Dan. Vidensk. Selsk., Mat.–Fys. Medd., 34 (1965) 1.Google Scholar