Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T14:58:03.981Z Has data issue: false hasContentIssue false

Characterization of Nano-size Indium Cluster in InGaN/GaN Multiple QuantumWells with High Indium Composition

Published online by Cambridge University Press:  10 February 2011

Hyung Koun Cho
Affiliation:
Department of Metallurgical Engineering, Dong-A University, Hadan-2-Dong 840, Saha-gu, Busan, 604-714, KOREA;
Jeong Yong Lee
Affiliation:
Department of Material Science and Engineering, KAIST, Daejeon 305-701, Korea
Get access

Abstract

We report the effect of strain-induced indium clustering on the emission properties of InGaN/GaN multiple quantum wells grown with high indium composition by MOCVD. Nanosize indium clustering confirmed by high-resolution transmission electron microscopy results in the redshift of the emission peak and the increase of the integrated photoluminescence (PL) intensity. We found that strong carrier localization in indium clustering induces the increases of the activation energy of PL integrated intensity and the temperature independence of PL decay profiles. All these observations suggest structurally and optically that the improved emission properties in the InGaN/GaN multiple quantum well with high indium composition are associated with the localized states in the nano-size indium cluster.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Sringer, Berlin, 1997).Google Scholar
2. Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).Google Scholar
3. Cho, H. K., Lee, J. Y., Sharma, N., Humphreys, C. J., Yang, G. M., Kim, C. S., Song, J. H., and Yu, P. W., Appl. Phys. Lett. 79, 2594 (2001).Google Scholar
4. Wetzel, G., Takeuchi, T., Yamagachi, S., Katoh, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998).Google Scholar
5. Bellaiche, L., Mattila, T., Wang, L.W., Wei, S.H., and Zunger, A., Appl. Phys. Lett. 74, 1842 (1999).Google Scholar
6. Cho, Y.H., Gainer, G. H., Fischer, A. J., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 1370 (1998).Google Scholar
7. Nikitin, V., Crowell, P. A., Gupta, J. A., Awschalom, D. D., Flack, F., and Samarth, N., Appl. Phys. Lett. 71, 1213 (1997).Google Scholar
8. Pozina, G., Bergman, J. P., Paskova, T., and Monemar, B., Appl. Phys. Lett. 75, 4124 (1999).Google Scholar