Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-07T14:17:53.770Z Has data issue: false hasContentIssue false

Characterization of Zirconium Germanosilicide Formed by Solid State Reaction of ZR With Sil−xGex Alloys

Published online by Cambridge University Press:  15 February 2011

Z. Wang
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
D. B. Aldrich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
P. Goeller
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
D. E. Sayers
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
Get access

Abstract

We have investigated the electrical and structural properties of zirconium germanosilicide (Zr-Si-Ge) films formed during the Zr-Sil−xGex solid state reaction. Thin films of C49 Zr(Si1−xGex)2 were formed from the solid phase reaction of Zr and Si1−xGex bilayer structures. It was observed that Zr reacts uniformly with the Sil−xGex alloy and that C49 Zr(Si1−x Gex)2 is the final phase of the Zr-Si1−xGex, solid phase reaction (such tht y = x) for all compositions examined (x = 0.20, 0.33, and 0.50). The sheet resistance of the Zr(Si1−xGex)2 thin films were higher than the sheet resistance measured for ZrSi2 films. The stability of Zr(Sil−x Gex)2 in contact with Si1−Gex was investigated and no germanium segregation was detected in the Zr(Si1−xGex)2/Si1−Gex structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stork, J. M., Prinz, E. J., and Magee, C. W., IEEE Electron Device Lett., 12, 303 (1991).Google Scholar
2 Garone, P. M., Venkataraman, V., and Sturm, J. C., IEDM 90, 383 (1990).Google Scholar
3 Arienzo, M., Comfort, J. H., Crabbe, E. F., Harame, D. L., Iyer, S. S., Meyerson, B. S., Patton, G. L., Stork, J. M. C., and Sunnin, Y. C., Mater. Res. Soc. Proc. 220, 421 (1991).Google Scholar
4 Houghton, D. C., Noel, J. P., and Rowell, N. L., Mater. Res. Soc. Proc. 220, 299 (1992).Google Scholar
5 Hong, Q. Z. and Mayer, J. W., J. Appl. Phys. 66, 611 (1989).Google Scholar
6. Wang, P. J., Chang, Chin-An, Meyerson, B. S., Chu, J. O., and Tejwani, M. J., Mater. Res. Soc. Proc. 260, 863 (1992).Google Scholar
7 Liou, H. K., Wu, X., and Gennser, U., Appl. Phys. Lett. 60, 577 (1992).Google Scholar
8 Buxbaum, A., Eizenberg, M., Raizmann, A., and Schaffler, F., Mater. Res. Soc. Proc. 230, 151 (1992).Google Scholar
9 Aubry, V., Meyer, F., Laval, R., Clerc, C., Warren, P., and Dutartre, D., Mater. Res. Soc. Proc. 320, 299 (1992).Google Scholar
10 Thompson, R. D., Tu, K. N., Angillelo, J., Delage, S., and Iyer, S. S., J. Electrochem. Soc, 135, 3161 (1988).Google Scholar
11 Thomas, O., d'Heurle, F. M., Delage, S., and Scilla, G., Appl. Surf. Sci. 38, 27 (1989).Google Scholar
12 Thomas, O., D'Heurle, F.M., Delage, S., and Scilla, G., Appl. Surface Sci., 38, 27 (1989).Google Scholar
13 Thomas, O., d'Heurle, F. M., and Delage, S., J. Mater. Res. 5, 1453 (1990).Google Scholar
14 Aldrich, D. B., Chen, Y. L., Sayers, D. E., and Nemanich, R. J., Mater. Res. Soc. Proc., 320, 305 (1994).Google Scholar
15 Ashburn, S. P., Öztürk, M. C., Harris, G., Maher, D. M., Aldrich, D. B., and Nemanich, R. J., J. Appl. Phys. (to be published).Google Scholar
16 Ashburn, S. P., Dissertation Thesis, North Carolina State University, 1994.Google Scholar
17 Ridgway, M. C., Elliman, R. G., Hauser, N., Baribeau, J.-M., and Jackman, T. E., Mater. Res. Soc. Proc. 260, 857 (1992).Google Scholar
18 Ridgway, M. C., Rao, M. R., and Baribeau, J. M., Mater. Res. Soc. Proc. 320, 329 (1994).Google Scholar
19 Watson, G. P., Monroe, D., Cheng, J-Y, Fitzgerald, E. A., Xie, Y-H, and Vandover, R. B., Mater. Res. Soc. Proc. 320, 323 (1994).Google Scholar
20 Qi, W-J, Li, B-Z, Huang, W-N, and Gu, Z-Q, J. Appl. Phys. 77, 1086 (1995).Google Scholar
21 Wang, Z., Chen, Y. L., Ying, H., Nemanich, R. J., and Sayers, D. E., Mater. Res. Soc. Proc. 320, 397 (1994).Google Scholar
22 Wang, Z., Aldrich, D. B., Chen, Y. L., Sayers, D. E., and Nemanich, R. J., Thin Solid Films (Accepted for publication).Google Scholar
23 Aldrich, D. B., Chen, Y. L., Sayers, D. E., and Nemanich, R. J., J. of Mater. Res. (Accepted for publication).Google Scholar
24 Aldrich, D. B., Chen, Y. L., Sayers, D. E., Nemanich, R. J., Ashburn, S. P., and Ozturk, M. C., J. of Appl. Phys. 77, 5107 (1995).Google Scholar
25 Kemner, K. M., Kropf, J., and Bunker, B. A., Rev. of Sci. Instrum. 65, 3667 (1994).Google Scholar
26 Thomas, O., d'Heurle, F. M., and Delage, S., J. of Materials Res. 5, 1453 (1990).Google Scholar
27 deBoer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in metals: transition metal alloys, (North-Holland Physics Publishing, New York, NY, 1988).Google Scholar