Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-22T04:28:39.488Z Has data issue: false hasContentIssue false

Chemical and Physical Principles of Processing that affect Microstructure of Al2O3-ZrO2 Composites

Published online by Cambridge University Press:  25 February 2011

Alan Bleier
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P. 0. Box 2008, Oak Ridge, TN 37831–6068
Gary Westmoreland
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P. 0. Box 2008, Oak Ridge, TN 37831–6068
Get access

Abstract

Aqueous processing of 1- to 20-% v/v binary suspensions containing 0.50-μm α-Al2O3 and 0.71-μm m-ZrO2 was investigated in the presence and absence of AlCl3 from pH 2 to 12 using sedimentation, rheological, electrokinetic, and potentiometric techniques. Differential sedimentation of the oxide particulates leads to a nonuniform distribution of ZrO2 when colloidally stable slurries are used. However, processing under conditions that promote weak association of the oxides improves uniformity, with optimal conditions in the absence of AlCl3 being in the pH range 5 to 6. Thus, prefired microstructure depends on the pH at which processing occurs, behavior derived from the different, pH-dependent surface properties of the oxides. Pre-exposure of m-ZrO2 to AlCl3 in the pH range of 4 to 8 alters the final composite microstructure via adsorption of Al-species and renders the two solids more similar electrostatically, thereby reducing the forces responsible for the weak association and uniform distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baile, S., Bleier, A., and Becher, P. F., in Better Ceramics Through Chemistry II. edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 73, Pittsburgh, PA) pp. 791800.Google Scholar
2. (a) Bleier, A. and Westmoreland, C. G., in Interfacial. Phenomena in Biotechnology and Materials Processing, edited by Moudgil, B. and Attia, Y. A. (Elsevier Science Publishers, New York), in press;Google Scholar
(b) Bleier, A. and Westmoreland, C. G., presented at the 1985 Fine Part. Soc. Annual Meeting, Boston, MA, 1985 (unpublished).Google Scholar
3. (a) Bleier, A., Becher, P. F., Baik, S., and Westmoreland, C. G., in Abstracts of the 89th Annual Meeting (Am. Ceram. Soc, Westerville, OH), 1987, Paper No. 68-B-87, p. 37;Google Scholar
(b) Bleier, A., in Abstracts of the 61st Colloid and Surface Science Symposium (Am. Chem. Soc, Ann Arbor, MI.), 1987, Paper No. 64.Google Scholar
4. Lynch, J. F., Ed., Engineering Property Data on Selected Ceramics. Vol. II Single Oxides, I. (Battelle Columbus Labs, Columbus, 1981) pp. 5.4.1.–1 and 5.4.5.-1.Google Scholar
5. (a) Hasz, W. C., M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983;Google Scholar
(b) Hasz, W. C., and Bleier, A., in Advances in Materials Characterization II. edited by Snyder, R. L., Condrate, R. A. Sr, and Johnson, P. F. (Plenum, New York, 1985) pp. 189201;CrossRefGoogle Scholar
(c) Bleier, A., in Advances in Materials Characterization, edited by Rossington, D. R., Condrate, R. A., and Snyder, R. L. (Plenum, New York, 1983) pp. 499514.CrossRefGoogle Scholar
6. Westall, J., Zachary, J., and Morel, F., Tech. Note No. 18, Ralph Parsons Lab., Massachusetts Institute of Technology, Cambridge, MA, 1976.Google Scholar
7. (a) James, R. O. and Parks, G. A., Surf. Colloid Sci. 12, 119216 (1982);CrossRefGoogle Scholar
(b) Yates, D. E., Levine, S., and Healy, T. W., J. C. S. Faraday I 70, 1807 (1974);CrossRefGoogle Scholar
(c) Davis, J. A., James, R. O., and Leckie, J. O., J. Colloid Interface Sci. 63, 480 (1978);CrossRefGoogle Scholar
(d) Davis, J. A. and Leckie, J. O., J. Colloid Interface Sci. 62, 90 (1978); 24, 32 (1980); ACS Symp. Ser. 93, 299 (1979).CrossRefGoogle Scholar
8. (a) Henry, D. C., Proc. R. Soc. Lond. A133. 106 (1931);Google Scholar
(b) Smith, A. L., in Dispersion of Powders in Liquids. 3rd Ed., edited by Parfitt, G. D. (Applied Science, London, 1981) Chapter 3, pp. 99148;Google Scholar
(c) Hunter, R. J., Zeta Potential in Colloid Science (Academic, London, 1981) 386 p.; Foundations of Colloid Science. Vol. I (Clarendon, Oxford, 1987) pp. 350–353, 558–561;Google Scholar
(d) Hiemenz, P. C., Principles of Colloid and Surface Chemistry. 2nd Ed., Marcel Dekker, New York, 1986, pp. 753757.Google Scholar
9. (a) Bleier, A. and Matijevié, E., Colloid, J. Interface Sci. 55 (3), 510524 (1976); J. Chem. Soc, Faraday Trans. I. 24, 1346–1359 (1978); inCrossRefGoogle Scholar
Chemistry of Waste Water Technology. edited by Rubin, A. J. (Ann Arbor Science, Ann Arbor, MI., 1978) Chapter 5, pp. 8198;Google Scholar
(b) Matijevie', E. and Bleier, A., Croat. Chem. Acta 50(1–4), 93105 (1977);Google Scholar
(c) Bleier, A., Ph.D. Thesis, Clarkson University, Potsdam, NY, 1976.Google Scholar
10. (a) Dezelié, N., Bilinski, H., and Worl, R. H. H., Inorg, J.. Nucl. Chem. 33, 791 (1971);CrossRefGoogle Scholar
b Sillen, L. G. and Martell, A. E., Stability Constants of Metal Ion Complexes (The Chemical Society, London, 1964) Spec Publ. No. 17; Suppl. No. 1, Spec Publ. No. 25 (1971).Google Scholar
11. Derjaguin, B. V. and Landau, L. D., Acta Physicochim. URSS 14, 633 (1941);Google Scholar
b Verwey, E. J. and Overbeek, J. Th. G., Theory of the Stability of Lvophobic Colloids (Elsevier, Amsterdam, 1948) 205 p.Google Scholar
12. (a) Derjaguin, B. V., Colloid J. USSR 16, 403 (1954); Discuss. Faraday Soc., 18, 85 (1954);Google Scholar
b Bierman, A., J. Colloid Sci. 10, 231 (1955); Proc. Nati. Acad. Sci. U.S.A. 41, 245 (1955).CrossRefGoogle Scholar
13. Hamaker, H. L., Physica 4 1058 (1937).CrossRefGoogle Scholar
14. Israelachvili, J. N., Intermolecular and Surface Forces (Academie, London, 1985) pp. 43, 144–145.Google Scholar
15. (a) Stern, O., Z. Elektrochem. 10, 508 (1924);Google Scholar
b Grahame, D. C., Chem. Rev. 41, 441 (1947).CrossRefGoogle Scholar
16. (a) Eagland, D., in Water, A Comprehensive Treatise. Vol. 5, edited by Franks, F. (Plenum, New York, 1974) Chapter 1, pp. 174;Google Scholar
(b) Pashley, R. M., J. Colloid Interface Sci. 86, 531 (1981);CrossRefGoogle Scholar
Israelachvili, J. N., Nature 306, 249 (1983).CrossRefGoogle Scholar