Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-31T12:27:48.540Z Has data issue: false hasContentIssue false

Chemical Durability of Sio2-Tio2-Zro2, Glass Films Made from Alkoxide Solutions

Published online by Cambridge University Press:  25 February 2011

W. Beier
Affiliation:
Technical University Clausthal, Institut für Nichtmetallische Werkstoffe, Professur für Glas, 3392 Clausthal-Zellerfeld, Federal Republic of Germany
G. H. Frischat
Affiliation:
Technical University Clausthal, Institut für Nichtmetallische Werkstoffe, Professur für Glas, 3392 Clausthal-Zellerfeld, Federal Republic of Germany
Get access

Abstract

Water, ethanol, and hydrochloric acid containing solutions of silicon ethoxide, titanium butoxide, and zirconium pro-poxide have been developed which show a constant viscosity for some days. The influence of formamide additions on the viscosity behavior was studied too.

Glass slides have been dip coated in the solutions, dried in ethanol containing atmosphere, and baked at 300 ° C. Multilayered films were obtained by repeating this procedure. After a final baking at 500 ° C, crack-free transparent SiO2-TiO2-ZrO2 glassy films have been obtained. Compared to the substrate, the films of thicknesses below 500 nm were very stable against hot NaOH solution. The stability of the coatings was analyzed by detection of the remaining TiO2 and ZrO2 in the films after the attack. This was done by a x-ray fluorescence (XFA) technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brinker, C. J. and Harrington, M. S., Solar En. Mat. 5, 159 (1981).CrossRefGoogle Scholar
/2/ Yoldas, B. E. and 'Keefe, O., Appl. Opt. 23, 3638 (1984).CrossRefGoogle Scholar
/3/ Ganguli, D. and Kundu, D., J. Mat. Sci. Lett. 2, 503 (1984).Google Scholar
/4/ Tohge, N., Matsuda, A. and Minami, T., Chem. Express 2, 141 (1987).Google Scholar
/5/ Nogami, M. and Moriya, Y., Yogyo Kyokai Shi 85, 448(1977).Google Scholar
/6/ Beier, W., Göktas, A. A. and Frischat, G. H., J. Non-Cryst. Sol., in press.Google Scholar
/7/ Zhu, C., Hou, L., Gan, F. and Jiang, Z., J. Non-Cryst. Sol. 63 105 (1984).Google Scholar
/8/ Beier, W., Göktas, A. A. and Frischat, G. H., J. Amer. Ceram. Soc. 69, 148 (1986).Google Scholar
/9/ Beier, W., Göktas, A. A., Frischat, G. H., Meise-Gresch, K., Wies, C. and Müller-Warmuth, W., submitted to Phys. Chem. Glasses.Google Scholar
/10/ Wies, C., Meise-Gresch, K., Müller-Warmuth, W., Beier, W., Göktas, A. A. and Frischat, G. H., submitted to Ber. Deut. Bunsenges. Phys. Chem.Google Scholar
/11/ Yoldas, B. E., Appl. Opt. 21, 2960 (1982).Google Scholar
/12/ Takahashi, Y., Niwa, K., Kobayashi, K. and Matsuki, M., Yogyo Kyokai Shi 95, 942 (1987).Google Scholar
/13/ Zaharescu, M., Parlog, C., Crisan, M., Sahini, M. und Moraru, D., Silikattechnik 22, 165 (1986).Google Scholar
/14/ Bel Hadj, F., Sempere, R. and Phalippou, J., J. Non-Cryst. Sol. 81, 417 (1986).Google Scholar
/15/ Mukherjee, S. P. and Lowdermilk, W. H., J.Non-Cryst. Sol. 18, 177 (1982).CrossRefGoogle Scholar
/16/ Strawbridge, I., Phalippou, J. and James, P. F., Phys. Chem. Glasses 25, 134 (1984).Google Scholar