Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-08T08:14:22.557Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of SiC from Silacyclobutane and Methylsilane

Published online by Cambridge University Press:  22 February 2011

A. D. Johnson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Perrin
Affiliation:
CNRS Palaiseau, France
J. A. Mucha
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. E. Ibbotson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The kinetics of SiC deposition has been studied over the temperature range 650–1050 ° C using the single-source reagents silacyclobutane (SCB) and methylsi-lane (MeSiH3 ) whose decomposition supplies the isomeric film-forming precursors H2Si = CH2 and HSiCH3, respectively. Thermal decomposition has been monitored by mass spectrometry and the SiC thin films characterized by scattering spec-trometry (RBS & ERD), FTIR spectroscopy and X-ray diffraction. Deposition rates from the two are comparable, with activation energies of 41 kcal/mole and 53 kcal/mole for SCB and MeSiH3 decomposition, respectively. Silacyclobutane deposits C-rich material lower temperatures, while SiC deposited from MeSiH3 is Si-rich at all temperatures. A mechanism for SiC CVD is proposed that is consistent with the observed kinetics and products.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lee, W., Interrante, L. V., Czekaj, C., Hudson, J., Lenz, K., Sun, B., Mat. Res. Soc. Symp. Proc. 131, 431 (1990).Google Scholar
[2] Interrante, L. V., Han, B., Hudson, J. B. and Whitmarsh, C., Appl. Surf. Sci. 46, 5 (1990).Google Scholar
[3] Shanks, H., Fang, C.J., Ley, L., Cardora, M., Demond, F. J. and Kalbitzer, S., Phy. Stat. Sol. 100, 43 (1980).Google Scholar
[4] Golino, C. N., Bush, R. D. and Sommer, L. H., J. Am. Chem. Soc. 97, 7371 (1975).Google Scholar
[5] Conlin, R.T., Gill, R.S., J. Am. Chem. Soc. 105, 618 (1983).Google Scholar
[6] Davidson, I. M. T., Fenton, A., Ijadi-Maghsoodi, S., Scampton, R. J., Auner, N., Grobe, J., Tillman, N. and Barton, T. J., Organometallics 3, 1593 (1984).Google Scholar
[7] Barton, T.J. and Tillman, N., J. Am. Chem. Soc. 109, 6711 (1987).Google Scholar
[8] Bozso, F., Yates, J. T., Choyke, W. J., Muehlhoff, L., J. Appl. Phys. 57, 2771 (1985).Google Scholar
[9] Ring, M. A., O'Neal, H. E., Rickborn, S. F. and Sawrey, B. A., Organometallics 2, 1891 (1983).Google Scholar
[10] Sawrey, B. A., O'Neal, H. E., Ring, M. A. and Coffey, D., J. Chem. Kinet 16, 7 (1984); J. Chem. Kinet 16, 23 (1984); J. Chem. Kinet 16, 31 (1984).Google Scholar
[11] Allendorf, M. D. and Melius, C. F., J. Phys. Chem., 96, 428 (1992).Google Scholar