Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T21:44:35.687Z Has data issue: false hasContentIssue false

Cluster Computations Related to Silicon Thermal Donors

Published online by Cambridge University Press:  28 February 2011

Lawrence C. Snyder
Affiliation:
Chemistry Dept. State University of New York at Albany 1400 Washington Ave.Albany, New York 12222
James W. Corbett
Affiliation:
Physics Dept. State University of New York at Albany 1400 Washington Ave. Albany, New York 12222
Get access

Abstract

Ab-initio quantum chemical computations have been applied to a set of molecular clusters derived from Si5 H12 to model defects in crystalline silicon involving boron, carbon, nitrogen, oxygen, and hydrogen. In computations of defect structure, hydrogen atoms terminating silicon valencies are fixed at their computed positions in Si5H12, to represent forces from the lattice, while the position of other atoms are varied.

We have computed the stable bonding structures of boron, carbon, nitrogen and oxygen atoms to a vacancy, as well as interstitial oxygen, the silicon-oxygen ylid and two oxygen atoms bound to a vacancy. The structures of the dipositive ions of the oxygen bearing clusters have been computed as part of a search for candidates for the core of the 450° C oxygen thermal donor in silicon crystal. The computed cluster energies are employed to give an account of defect thermochemistry; the addition of the free atoms to a vacancy, the addition of interstitial oxygen atoms to a vacancy, the reaction of interstitial oxygen atoms to form a vacancy-oxygen complex with the emission of silicon monoxide, and the reaction of interstitial oxygen with the dipositive ion of substitutional oxygen to form the dipositive ion of two oxygen atoms bound to a vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snyder, L. C. and Basch, H., J. Am. Chem. Soc.,91 2189 (1969).CrossRefGoogle Scholar
2.Molecular Wave Functions and Properties,” Snyder, L. C. and Basch, H., Wiley-Interscience, N. Y. (1972).Google Scholar
3. Snyder, L. C. and Wasserman, Z. R., Chem. Phys. Letts.,51 349 (1977).CrossRefGoogle Scholar
4. Snyder, L. C. and Wasserman, Z. R., J. Am. Chem. Soc., 101 5222 (1979).CrossRefGoogle Scholar
5. Stavola, M. and Snyder, L. C., Proceedings of the Symposium on Defects in Silicon, Electrochemical Society, San Francisco, May, 1983.Google Scholar
6. Snyder, L. C. and Corbett, J. W., Thirteenth International Conference on Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. H. Jr. 220 (The Metallurgical Soc. of AIME, N. Y., 1985).Google Scholar
7. Kohn, W. and Luttinger, J. M., Phys. Rev. 98. 915 (1955).CrossRefGoogle Scholar
8. Ying, Xie, Snyder, L. C., Sahu, S. N., and Corbett, J. W., Phys. Stat. Sol. (b) 130 333 (1985).CrossRefGoogle Scholar
9. Binkley, J. S., Whiteside, R. A., Krishnan, R., Seeger, R., De Frees, D. J., Schlegel, H. B., Topiol, S., Hahn, L. R., and Pople, J. A., “Gaussian-80 An Ab-Initio Molecular Orbital Program,” Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.Google Scholar
10. Pietro, W. J., Francl, M. M., Hehre, W. J., De Frees, D. J., Pople, J. A., and Binkley, J. S., J. Am. Chem. Soc., 104 5039 (1982).CrossRefGoogle Scholar
11. Snyder, L. C. and Raghavachari, K., J. Chem. Phys. 80 5076 (1984).CrossRefGoogle Scholar
12. Moeller, C. and Plesset, M. S., Phys. Rev., 46 618 (1934).CrossRefGoogle Scholar
13. Dewar, M. J. S. and Thiel, W., J. Am. Chem. Soc. 99 4899 (1977).CrossRefGoogle Scholar
14. Dewar, M. J. S., McKee, M. L. and Rzepa, H. S., J. Am. Chem. Soc., 100 3607 (1978).CrossRefGoogle Scholar
15. “Chemistry: The Central Science,” Brown, T. L., and LeMay, H. E. Jr., Prentice Hall (1985) p. 201.Google Scholar
16.The Strengths of Chemical Bonds,” Coltrell, T. L., Butterworths, London, (1954).Google Scholar
17. Corbett, J. W., Watkins, G. D., and McDonald, R. S., Phys. Rev. 135 A1381 (1964).CrossRefGoogle Scholar
18. Muller, S. A., Sprenger, M., Sieverts, E. G., and Ammerlaan, C. A. J., Solid State Commun. 26 987 (1978).CrossRefGoogle Scholar
19. See also the paper of Spaeth, J. M. in this conference.Google Scholar
20. Oeder, R. and Wagner, P. in “Defects in Semiconductors II,” edited by Mahajan, S. and Corbett, J. W. (North Holland, New York, 1983).Google Scholar
21. Pajot, B., Compain, H., Leroneille, J., and Clerjand, B., Physica 117B and 118B, 110, (1983).Google Scholar
22. Stavola, M., Lee, K. M., Nabity, J. C., Freeland, P. E. and Kimerling, L. C., Proceeding of the Spring Materials Research Society Meeting, San Francisco, April (1985), ed. Johns, N..Google Scholar
23. DeLeo, G. G., Fowler, W. B. and Watkins, G. D., Phys. Rev. B29 3193 (1984).CrossRefGoogle Scholar
24. DeLeo, G. G., Milsted, C. S. Jr. and Kralik, J. C., Phys. Rev. B31 3588 (1985).CrossRefGoogle Scholar
25. Brower, K. L., Phys. Rev. B26 6040 (1982).CrossRefGoogle Scholar
26. Snyder, L. C., Ying, Xie, Wu, R., Corbett, J. W., and Sahu, S. N. (to be published).Google Scholar