Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-29T22:19:11.814Z Has data issue: false hasContentIssue false

Comparison Between Rapid Thermal and Furnace Annealing for A-Si Solid Phase Crystallization

Published online by Cambridge University Press:  10 February 2011

Reece Kingi
Affiliation:
University, University Park, PA16802, and *Intevac RTP Systems, 3845 Atherton Road, Suite 1 Rocklin, CA95765
Yaozu Wang
Affiliation:
University, University Park, PA16802, and *Intevac RTP Systems, 3845 Atherton Road, Suite 1 Rocklin, CA95765
Stephen J. Fonash
Affiliation:
University, University Park, PA16802, and *Intevac RTP Systems, 3845 Atherton Road, Suite 1 Rocklin, CA95765
Osama Awadelkarim
Affiliation:
University, University Park, PA16802, and *Intevac RTP Systems, 3845 Atherton Road, Suite 1 Rocklin, CA95765
John Mehlhaff
Affiliation:
Howard Hovagimian, Electronic Materials Processing and Research Laboratory, Penn State
Get access

Abstract

Rapid thermal annealing and furnace annealing for the solid phase crystallization of amorphous silicon thin films deposited using PECVD from argon diluted silane have been compared. Results reveal that the crystallization time, the growth time, and the transient time are temperature activated, and that the resulting polycrystalline silicon grain size is inversely proportional to the annealing temperature, for both furnace annealing and rapid thermal annealing. In addition, rapid thermal annealing was found to result in a lower transient time, a lower growth time, a lower crystallization time, and smaller grain sizes than furnace annealing, for a given annealing temperature. Interestingly, the transient time, growth time, and crystallization time activation energies are much lower for rapid thermal annealing, compared to furnace annealing.

We propose two models to explain the observed differences between rapid thermal annealing and furnace annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, I-Wei, Solid State Phenomena Vols 37–38 (1994) pp. 553564 Google Scholar
2 Nakazawa, K. and Tanaka, K., J. Appl. Phys. 68 (3) 1990 (1029)Google Scholar
3 Kretz, T., Stroh, R., Leganeux, P., Huet, O., Magis, M. and Pribat, D., Solid State Phenomena Vols 37–38 (1994) pp. 311316 Google Scholar
4 Guillemet, J., Pieraggi, B., de Mauduit, B. and Claverie, A., Solid State Phenomena, Vols 37–38 (1994) pp. 293298 Google Scholar
5 Liu, C. T., Diodato, P. W., Lee, K. H., Cong, H. I., Tech. Dig. of 1995 IEDM, p.919 Google Scholar
6 Dyer, T. E. et al, Solid State Phenomena, Vols. 37–38 (1994) p. 329 Google Scholar
7 Sameshima, T. et al, J. Appl. Phys. 76 (11) 1994 (7377)Google Scholar
8 King, T., Trends in Polycrystalline Silicon Thin Film Transistor Technologies for AMLCDs, Second International Workshop on AMLCDs, September 1995 Google Scholar
9 Yin, A., Fonash, S., Reber, D., Li, T. and Bennett, M., MRS Symposium Proceedings 345, 1994, pp. 8186 Google Scholar
10 Kammins, T., Polycrystalline Silicon for IC Applications, (Klumer Academic Publishers, 1988)Google Scholar
11 Wu, I-Wei, Chiang, A., Ovecoglu, M. and Huang, T., J. Appl. Phys. 65 (10) 1989 (4036)Google Scholar
12 Takamori, T., Messier, R., and Roy, R., Appl. Phys. Lett. Vol.20, No. 5, 1972, p. 201 Google Scholar
13 Takamori, T., Messier, R., and Roy, R., J. Mats. Sci. 8 (1973) p. 1809 Google Scholar